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1 Abstract

As many of you know, systemd is the new Fedora init system, starting with F14,
and it is also on its way to being adopted in a number of other distributions as
well (for example, OpenSUSE). For administrators systemd provides a variety of
new features and changes and enhances the administrative process substantially.
This blog story is the first part of a series of articles I plan to post roughly every
week for the next months. In every post I will try to explain one new feature of
systemd. Many of these features are small and simple, so these stories should
be interesting to a broader audience. However, from time to time we’ll dive a
little bit deeper into the great new features systemd provides you with.

2 Disclaimer

This handbook is written by Lennart Poettering. There are maybe some ad-
ditions, cuts or other changes for increasing readability. Please visit Lennarts
Blog for the original Blogposts:

https://0pointer.de/blog
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3 Verifying Bootup

Traditionally, when booting up a Linux system, you see a lot of little messages
passing by on your screen. As we work on speeding up and parallelizing the boot
process these messages are becoming visible for a shorter and shorter time only
and be less and less readable – if they are shown at all, given we use graphical
boot splash technology like Plymouth these days. Nonetheless the information
of the boot screens was and still is very relevant, because it shows you for each
service that is being started as part of bootup, wether it managed to start up
successfully or failed (with those green or red [ OK ] or [ FAILED ] indicators).
To improve the situation for machines that boot up fast and parallelized and to
make this information more nicely available during runtime, we added a feature
to systemd that tracks and remembers for each service whether it started up
successfully, whether it exited with a non-zero exit code, whether it timed out,
or whether it terminated abnormally (by segfaulting or similar), both during
start-up and runtime. By simply typing systemctl in your shell you can query
the state of all services, both systemd native and SysV/LSB services:

[ root@lambda ] ˜# systemct l
UNIT LOAD ACTIVE SUB
dev−hugepages . automount loaded ac t i v e running
dev−mqueue . automount loaded ac t i v e running
proc−sys−f s−binfmt misc . automount loaded ac t i v e wait ing
sys−kerne l−debug . automount loaded ac t i v e wait ing
sys−kerne l−s e c u r i t y . automount loaded ac t i v e wait ing
sys−devices−pc . . . 0 000 : 02 : 00 . 0 − net−eth0 . dev ice loaded ac t i v e plugged
sys−devices−v i r tua l−tty−tty9 . dev ice loaded ac t i v e plugged
−.mount loaded ac t i v e mounted
boot . mount loaded ac t i v e mounted
dev−hugepages . mount loaded ac t i v e mounted
dev−mqueue . mount loaded ac t i v e mounted
home . mount loaded ac t i v e mounted
proc−sys−f s−binfmt misc . mount loaded ac t i v e mounted
abrtd . s e r v i c e loaded ac t i v e running
bus . s e r v i c e loaded ac t i v e running
getty@tty2 . s e r v i c e loaded ac t i v e running
getty@tty3 . s e r v i c e loaded ac t i v e running
getty@tty4 . s e r v i c e loaded ac t i v e running
getty@tty5 . s e r v i c e loaded ac t i v e running
getty@tty6 . s e r v i c e loaded ac t i v e running
haldaemon . s e r v i c e loaded ac t i v e running
hdapsd@sda . s e r v i c e loaded ac t i v e running
i rqba l ance . s e r v i c e loaded ac t i v e running
i s c s i . s e r v i c e loaded ac t i v e ex i t ed
i s c s i d . s e r v i c e loaded ac t i v e ex i t ed
l i v e s y s−l a t e . s e r v i c e loaded ac t i v e ex i t ed
l i v e s y s . s e r v i c e loaded ac t i v e ex i t ed
lvm2−monitor . s e r v i c e loaded ac t i v e ex i t ed
mdmonitor . s e r v i c e loaded ac t i v e running
modem−manager . s e r v i c e loaded ac t i v e running
n e t f s . s e r v i c e loaded ac t i v e ex i t ed
NetworkManager . s e r v i c e loaded ac t i v e running
ntpd . s e r v i c e loaded maintenance maintenance

LOAD = Re f l e c t s whether the unit d e f i n i t i o n was proper ly loaded .
ACTIVE = The high−l e v e l un i t a c t i v a t i on state , i . e . g e n e r a l i z a t i o n o f SUB.
SUB = The low−l e v e l un i t a c t i v a t i on state , va lues depend on unit type .
JOB = Pending job f o r the unit .

221 un i t s l i s t e d . Pass −−a l l to see i n a c t i v e units , too .
[ root@lambda ] ˜#

(I have shortened the output above a little, and removed a few lines not relevant
for this blog post.) Look at the ACTIVE column, which shows you the high-
level state of a service (or in fact of any kind of unit systemd maintains, which
can be more than just services, but we’ll have a look on this in a later blog
posting), whether it is active (i.e. running), inactive (i.e. not running) or in
any other state. If you look closely you’ll see one item in the list that is marked

4



maintenance and highlighted in red. This informs you about a service that
failed to run or otherwise encountered a problem. In this case this is ntpd.
Now, let’s find out what actually happened to ntpd, with the systemctl status
command:

[ root@lambda ] ˜# systemct l s t a tu s ntpd . s e r v i c e
ntpd . s e r v i c e − Network Time Se rv i c e

Loaded : loaded (/ etc / systemd/system/ntpd . s e r v i c e )
Active : maintenance

Main : 953 ( code=exited , s t a tu s =255)
CGroup : name=systemd :/ systemd−1/ntpd . s e r v i c e

[ root@lambda ] ˜#

This shows us that NTP terminated during runtime (when it ran as PID 953),
and tells us exactly the error condition: the process exited with an exit status
of 255.

In a later systemd version, we plan to hook this up to ABRT, as soon as this
enhancement request is fixed. Then, if systemctl status shows you information
about a service that crashed it will direct you right-away to the appropriate
crash dump in ABRT.

Summary: use systemctl and systemctl status as modern, more complete re-
placements for the traditional boot-up status messages of SysV services. sys-
temctl status not only captures in more detail the error condition but also shows
runtime errors in addition to start-up errors. That’s it for this week, make sure
to come back next week, for the next posting about systemd for administrators!

4 Which Service Owns Which Processes?

On most Linux systems the number of processes that are running by default is
substantial. Knowing which process does what and where it belongs to becomes
increasingly difficult. Some services even maintain a couple of worker processes
which clutter the ”ps” output with many additional processes that are often not
easy to recognize. This is further complicated if daemons spawn arbitrary 3rd-
party processes, as Apache does with CGI processes, or cron does with user jobs.

A slight remedy for this is often the process inheritance tree, as shown by ”ps
xaf”. However this is usually not reliable, as processes whose parents die get
reparented to PID 1, and hence all information about inheritance gets lost. If
a process ”double forks” it hence loses its relationships to the processes that
started it. (This actually is supposed to be a feature and is relied on for the
traditional Unix daemonizing logic.) Furthermore processes can freely change
their names with PR SETNAME or by patching argv[0], thus making it harder
to recognize them. In fact they can play hide-and-seek with the administrator
pretty nicely this way.

In systemd we place every process that is spawned in a control group named af-
ter its service. Control groups (or cgroups) at their most basic are simply groups
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of processes that can be arranged in a hierarchy and labelled individually. When
processes spawn other processes these children are automatically made members
of the parents cgroup. Leaving a cgroup is not possible for unprivileged pro-
cesses. Thus, cgroups can be used as an effective way to label processes after the
service they belong to and be sure that the service cannot escape from the label,
regardless how often it forks or renames itself. Furthermore this can be used to
safely kill a service and all processes it created, again with no chance of escaping.

In today’s installment I want to introduce you to two commands you may use
to relate systemd services and processes. The first one, is the well known ps
command which has been updated to show cgroup information along the other
process details. And this is how it looks:

$ ps xawf −eo pid , user , cgroup , args
PID USER CGROUP COMMAND

2 root − [ kthreadd ]
3 root − \ [ k s o f t i r qd /0 ]

[ . . . ]
4281 root − \ [ f lu sh −8:0]

1 root name=systemd :/ systemd−1 / sb in / i n i t
455 root name=systemd :/ systemd−1/ s y s i n i t . s e r v i c e / sb in /udevd −d

28188 root name=systemd :/ systemd−1/ s y s i n i t . s e r v i c e \ / sb in /udevd −d
28191 root name=systemd :/ systemd−1/ s y s i n i t . s e r v i c e \ / sb in /udevd −d
1131 root name=systemd :/ systemd−1/auditd . s e r v i c e auditd
1133 root name=systemd :/ systemd−1/auditd . s e r v i c e \ / sb in / audispd
1135 root name=systemd :/ systemd−1/auditd . s e r v i c e \ / usr / sb in / sed i spatch
1193 root name=systemd :/ systemd−1/ r s y s l o g . s e r v i c e / sb in / r sy s l ogd −c 4
1195 root name=systemd :/ systemd−1/cups . s e r v i c e cupsd −C / etc / cups/cupsd . conf
1210 root name=systemd :/ systemd−1/ i rqba l ance . s e r v i c e i rqba l ance
1216 root name=systemd :/ systemd−1/dbus . s e r v i c e / usr / sb in /modem−manager
1219 root name=systemd :/ systemd−1/dbus . s e r v i c e / usr / l i b e x e c / po lk i t −1/po lk i td

1317 root name=systemd :/ systemd−1/abrtd . s e r v i c e / usr / sb in / abrtd −d −s
1332 root name=systemd :/ systemd−1/getty@ . s e r v i c e / tty2 / sb in /mingetty tty2
1339 root name=systemd :/ systemd−1/getty@ . s e r v i c e / tty3 / sb in /mingetty tty3
1342 root name=systemd :/ systemd−1/getty@ . s e r v i c e / tty5 / sb in /mingetty tty5
1343 root name=systemd :/ systemd−1/getty@ . s e r v i c e / tty4 / sb in /mingetty tty4
1344 root name=systemd :/ systemd−1/crond . s e r v i c e crond
1346 root name=systemd :/ systemd−1/getty@ . s e r v i c e / tty6 / sb in /mingetty tty6
1362 root name=systemd :/ systemd−1/sshd . s e r v i c e / usr / sb in / sshd
1759 l ennar t name=systemd :/ user / l ennar t /1 gnome−s c r e en save r
909 l ennar t name=systemd :/ user / l ennar t /1 gnome−te rmina l
1913 l ennar t name=systemd :/ user / l ennar t /1 \ gnome−pty−he lpe r
1914 l ennar t name=systemd :/ user / l ennar t /1 \ bash

29231 l ennar t name=systemd :/ user / l ennar t /1 | \ ssh tango
2221 l ennar t name=systemd :/ user / l ennar t /1 \ bash
4193 l ennar t name=systemd :/ user / l ennar t /1 | \ ssh tango
2461 l ennar t name=systemd :/ user / l ennar t /1 \ bash

27251 l ennar t name=systemd :/ user / l ennar t /1 \ empathy

(Note that this output is shortened, I have removed most of the kernel threads
here, since they are not relevant in the context of this blog story)

In the third column you see the cgroup systemd assigned to each process. You’ll
find that the udev processes are in the name=systemd:/systemd-1/sysinit.service
cgroup, which is where systemd places all processes started by the sysinit.service
service, which covers early boot.
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My personal recommendation is to set the shell alias psc to the ps command
line shown above:

a l i a s psc=’ps xawf −eo pid , user , cgroup , args ’

With this service information of processes is just four keypresses away! A differ-
ent way to present the same information is the systemd-cgls tool we ship with
systemd. It shows the cgroup hierarchy in a pretty tree. Its output looks like
this:

$ systemd−c g l s
+ 2 [ kthreadd ]
[ . . . ]
+ 4281 [ f lush −8:0]
+ user
| \ l ennar t
| \ 1
| + 1495 pam: gdm−password
| + 1521 gnome−s e s s i o n
| + 1534 dbus−launch −−sh−syntax −−ex i t−with−s e s s i o n
| + 1603 / usr / l i b e x e c /gconfd−2
| + 1612 / usr / l i b e x e c /gnome−s e t t i ng s−daemon
| + 1615 /ushr / l i b e x e c / gvfsd
| \ 29519 systemd−c g l s
\ systemd−1

+ 1 / sbin / i n i t
+ ntpd . s e r v i c e
| \ 4112 / usr / sb in /ntpd −n −u ntp : ntp −g
+ systemd−l o gge r . s e r v i c e
| \ 1499 / l i b / systemd/systemd−l o gge r
+ accounts−daemon . s e r v i c e
| \ 1496 / usr / l i b e x e c / accounts−daemon
+ r tk i t−daemon . s e r v i c e
| \ 1473 / usr / l i b e x e c / r tk i t−daemon
+ console−kit−daemon . s e r v i c e
| \ 1408 / usr / sb in / conso le−kit−daemon −−no−daemon
+ prefdm . s e r v i c e
| + 1376 / usr / sb in /gdm−binary −nodaemon
| + 1419 / usr /bin /dbus−launch −−ex i t−with−s e s s i o n
| \ 1511 / usr /bin /gnome−keyring−daemon −−daemonize −−l o g i n
+ getty@ . s e r v i c e
| + tty6
| | \ 1346 / sb in /mingetty tty6
| + tty4
| | \ 1343 / sb in /mingetty tty4
| + tty5
| | \ 1342 / sb in /mingetty tty5
| + tty3
| | \ 1339 / sb in /mingetty tty3
| \ tty2
| \ 1332 / sb in /mingetty tty2
\ 28191 / sb in /udevd −d

(This too is shortened, the same way)

As you can see, this command shows the processes by their cgroup and hence
service, as systemd labels the cgroups after the services. For example, you can
easily see that the auditing service auditd.service spawns three individual pro-
cesses, auditd, audisp and sedispatch.

If you look closely you will notice that a number of processes have been as-
signed to the cgroup /user/1. At this point let’s simply leave it at that systemd
not only maintains services in cgroups, but user session processes as well. In a
later installment we’ll discuss in more detail what this about.

So much for now, come back soon for the next installment!
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5 How Do I Convert A SysV Init Script Into A
systemd Service File?

Traditionally, Unix and Linux services (daemons) are started via SysV init
scripts. These are Bourne Shell scripts, usually residing in a directory such
as /etc/rc.d/init.d/ which when called with one of a few standardized argu-
ments (verbs) such as start, stop or restart controls, i.e. starts, stops or restarts
the service in question. For starts this usually involves invoking the daemon
binary, which then forks a background process (more precisely daemonizes).
Shell scripts tend to be slow, needlessly hard to read, very verbose and frag-
ile. Although they are immensly flexible (after all, they are just code) some
things are very hard to do properly with shell scripts, such as ordering par-
allized execution, correctly supervising processes or just configuring execution
contexts in all detail. systemd provides compatibility with these shell scripts,
but due to the shortcomings pointed out it is recommended to install native
systemd service files for all daemons installed. Also, in contrast to SysV init
scripts which have to be adjusted to the distribution systemd service files are
compatible with any kind of distribution running systemd (which become more
and more these days...). What follows is a terse guide how to take a SysV
init script and translate it into a native systemd service file. Ideally, upstream
projects should ship and install systemd service files in their tarballs. If you
have successfully converted a SysV script according to the guidelines it might
hence be a good idea to submit the file as patch to upstream. How to prepare
a patch like that will be discussed in a later installment, suffice to say at this
point that the daemon(7) manual page shipping with systemd contains a lot of
useful information regarding this.

So, let’s jump right in. As an example we’ll convert the init script of the
ABRT daemon into a systemd service file. ABRT is a standard component of
every Fedora install, and is an acronym for Automatic Bug Reporting Tool,
which pretty much describes what it does, i.e. it is a service for collecting crash
dumps. Its SysV script I have uploaded here.
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The first step when converting such a script is to read it (surprise surprise!) and
distill the useful information from the usually pretty long script. In almost all
cases the script consists of mostly boilerplate code that is identical or at least
very similar in all init scripts, and usually copied and pasted from one to the
other. So, let’s extract the interesting information from the script linked above:

• A description string for the service is ”Daemon to detect crashing apps”.
As it turns out, the header comments include a redundant number of
description strings, some of them describing less the actual service but
the init script to start it. systemd services include a description too, and
it should describe the service and not the service file.

• The LSB header[1] contains dependency information. systemd due to its
design around socket-based activation usually needs no (or very little)
manually configured dependencies. (For details regarding socket activa-
tion see the original announcement blog post.) In this case the depen-
dency on $syslog (which encodes that abrtd requires a syslog daemon), is
the only valuable information. While the header lists another dependency
($local fs) this one is redundant with systemd as normal system services
are always started with all local file systems available.

• The LSB header suggests that this service should be started in runlevels
3 (multi-user) and 5 (graphical).

• The daemon binary is /usr/sbin/abrtd

And that’s already it. The entire remaining content of this 115-line shell script
is simply boilerplate or otherwise redundant code: code that deals with synchro-
nizing and serializing startup (i.e. the code regarding lock files) or that outputs
status messages (i.e. the code calling echo), or simply parsing of the verbs (i.e.
the big case block).

From the information extracted above we can now write our systemd service
file:

[ Unit ]
Desc r ip t i on=Daemon to detec t c rash ing apps
After=sy s l og . t a rg e t

[ Se rv i c e ]
ExecStart=/usr / sb in / abrtd
Type=fo rk ing

[ I n s t a l l ]
WantedBy=multi−user . t a rg e t

A little explanation of the contents of this file: The [Unit] section contains
generic information about the service. systemd not only manages system ser-
vices, but also devices, mount points, timer, and other components of the sys-
tem. The generic term for all these objects in systemd is a unit, and the [Unit]
section encodes information about it that might be applicable not only to ser-
vices but also in to the other unit types systemd maintains. In this case we
set the following unit settings: we set the description string and configure that
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the daemon shall be started after Syslog[2], similar to what is encoded in the
LSB header of the original init script. For this Syslog dependency we create
a dependency of type After= on a systemd unit syslog.target. The latter is a
special target unit in systemd and is the standardized name to pull in a syslog
implementation. For more information about these standardized names see the
systemd.special(7). Note that a dependency of type After= only encodes the
suggested ordering, but does not actually cause syslog to be started when abrtd
is – and this is exactly what we want, since abrtd actually works fine even with-
out syslog being around. However, if both are started (and usually they are)
then the order in which they are is controlled with this dependency.

The next section is [Service] which encodes information about the service itself.
It contains all those settings that apply only to services, and not the other kinds
of units systemd maintains (mount points, devices, timers, ...). Two settings are
used here: ExecStart= takes the path to the binary to execute when the service
shall be started up. And with Type= we configure how the service notifies the
init system that it finished starting up. Since traditional Unix daemons do this
by returning to the parent process after having forked off and initialized the
background daemon we set the type to forking here. That tells systemd to wait
until the start-up binary returns and then consider the processes still running
afterwards the daemon processes.

The final section is [Install]. It encodes information about how the suggested
installation should look like, i.e. under which circumstances and by which trig-
gers the service shall be started. In this case we simply say that this service
shall be started when the multi-user.target unit is activated. This is a special
unit (see above) that basically takes the role of the classic SysV Runlevel 3[3].
The setting WantedBy= has little effect on the daemon during runtime. It is
only read by the systemctl enable command, which is the recommended way to
enable a service in systemd. This command will simply ensure that our little
service gets automatically activated as soon as multi-user.target is requested,
which it is on all normal boots[4].

And that’s it. Now we already have a minimal working systemd service file.
To test it we copy it to /etc/systemd/system/abrtd.service and invoke system-
ctl daemon-reload. This will make systemd take notice of it, and now we can
start the service with it: systemctl start abrtd.service. We can verify the status
via systemctl status abrtd.service. And we can stop it again via systemctl stop
abrtd.service. Finally, we can enable it, so that it is activated by default on
future boots with systemctl enable abrtd.service.
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The service file above, while sufficient and basically a 1:1 translation (feature-
and otherwise) of the SysV init script still has room for improvement. Here it
is a little bit updated:

[ Unit ]
Desc r ip t i on=ABRT Automated Bug Reporting Tool
After=sy s l og . t a rg e t

[ Se rv i c e ]
Type=dbus
BusName=com . redhat . abrt
ExecStart=/usr / sb in / abrtd −d −s

[ I n s t a l l ]
WantedBy=multi−user . t a rg e t

So, what did we change? Two things: we improved the description string a
bit. More importantly however, we changed the type of the service to dbus
and configured the D-Bus bus name of the service. Why did we do this? As
mentioned classic SysV services daemonize after startup, which usually involves
double forking and detaching from any terminal. While this is useful and nec-
essary when daemons are invoked via a script, this is unnecessary (and slow) as
well as counterproductive when a proper process babysitter such as systemd is
used. The reason for that is that the forked off daemon process usually has little
relation to the original process started by systemd (after all the daemonizing
scheme’s whole idea is to remove this relation), and hence it is difficult for sys-
temd to figure out after the fork is finished which process belonging to the service
is actually the main process and which processes might just be auxiliary. But
that information is crucial to implement advanced babysitting, i.e. supervising
the process, automatic respawning on abnormal termination, collectig crash and
exit code information and suchlike. In order to make it easier for systemd to
figure out the main process of the daemon we changed the service type to dbus.
The semantics of this service type are appropriate for all services that take a
name on the D-Bus system bus as last step of their initialization[5]. ABRT is
one of those. With this setting systemd will spawn the ABRT process, which
will no longer fork (this is configured via the -d -s switches to the daemon), and
systemd will consider the service fully started up as soon as com.redhat.abrt
appears on the bus. This way the process spawned by systemd is the main pro-
cess of the daemon, systemd has a reliable way to figure out when the daemon
is fully started up and systemd can easily supervise it.
And that’s all there is to it. We have a simple systemd service file now that
encodes in 10 lines more information than the original SysV init script encoded
in 115. And even now there’s a lot of room left for further improvement utiliz-
ing more features systemd offers. For example, we could set Restart=restart-
always to tell systemd to automatically restart this service when it dies. Or, we
could use OOMScoreAdjust=-500 to ask the kernel to please leave this process
around when the OOM killer wreaks havoc. Or, we could use CPUSchedul-
ingPolicy=idle to ensure that abrtd processes crash dumps in background only,
always allowing the kernel to give preference to whatever else might be running
and needing CPU time.
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For more information about the configuration options mentioned here, see the
respective man pages systemd.unit(5), systemd.service(5), systemd.exec(5). Or,
browse all of systemd’s man pages.

Of course, not all SysV scripts are as easy to convert as this one. But gladly, as
it turns out the vast majority actually are.

That’s it for today, come back soon for the next installment in our series.

6 Killing Services

Killing a system daemon is easy, right? Or is it?

Sure, as long as your daemon persists only of a single process this might actu-
ally be somewhat true. You type killall rsyslogd and the syslog daemon is gone.
However it is a bit dirty to do it like that given that this will kill all processes
which happen to be called like this, including those an unlucky user might have
named that way by accident. A slightly more correct version would be to read
the .pid file, i.e. kill ‘cat /var/run/syslogd.pid‘. That already gets us much
further, but still, is this really what we want?

More often than not it actually isn’t. Consider a service like Apache, or crond,
or atd, which as part of their usual operation spawn child processes. Arbitrary,
user configurable child processes, such as cron or at jobs, or CGI scripts, even full
application servers. If you kill the main apache/crond/atd process this might
or might not pull down the child processes too, and it’s up to those processes
whether they want to stay around or go down as well. Basically that means
that terminating Apache might very well cause its CGI scripts to stay around,
reassigned to be children of init, and difficult to track down.

systemd to the rescue: With systemctl kill you can easily send a signal to
all processes of a service. Example:

# systemct l k i l l crond . s e r v i c e

This will ensure that SIGTERM is delivered to all processes of the crond service,
not just the main process. Of course, you can also send a different signal if you
wish. For example, if you are bad-ass you might want to go for SIGKILL right-
away:

# systemct l k i l l −s SIGKILL crond . s e r v i c e

And there you go, the service will be brutally slaughtered in its entirety, regard-
less how many times it forked, whether it tried to escape supervision by double
forking or fork bombing.

Sometimes all you need is to send a specific signal to the main process of a
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service, maybe because you want to trigger a reload via SIGHUP. Instead of
going via the PID file, here’s an easier way to do this:

# systemct l k i l l −s HUP −−k i l l−who=main crond . s e r v i c e

So again, what is so new and fancy about killing services in systemd? Well, for
the first time on Linux we can actually properly do that. Previous solutions
were always depending on the daemons to actually cooperate to bring down
everything they spawned if they themselves terminate. However, usually if you
want to use SIGTERM or SIGKILL you are doing that because they actually
do not cooperate properly with you.

How does this relate to systemctl stop? kill goes directly and sends a signal
to every process in the group, however stop goes through the official configured
way to shut down a service, i.e. invokes the stop command configured with Ex-
ecStop= in the service file. Usually stop should be sufficient. kill is the tougher
version, for cases where you either don’t want the official shutdown command
of a service to run, or when the service is hosed and hung in other ways.

(It’s up to you BTW to specify signal names with or without the SIG pre-
fix on the -s switch. Both works.)

It’s a bit surprising that we have come so far on Linux without even being
able to properly kill services. systemd for the first time enables you to do this
properly.

7 The Three Levels of ”Off”

In systemd, there are three levels of turning off a service (or other unit). Let’s
have a look which those are:

1. You can stop a service. That simply terminates the running instance of
the service and does little else. If due to some form of activation (such
as manual activation, socket activation, bus activation, activation by sys-
tem boot or activation by hardware plug) the service is requested again
afterwards it will be started. Stopping a service is hence a very simple,
temporary and superficial operation. Here’s an example how to do this
for the NTP service:

$ sys temct l stop ntpd . s e r v i c e

This is roughly equivalent to the following traditional command which is
available on most SysV inspired systems:

$ s e r v i c e ntpd stop

In fact, on Fedora 15, if you execute the latter command it will be trans-
parently converted to the former.
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2. You can disable a service. This unhooks a service from its activation
triggers. That means, that depending on your service it will no longer be
activated on boot, by socket or bus activation or by hardware plug (or any
other trigger that applies to it). However, you can still start it manually if
you wish. If there is already a started instance disabling a service will not
have the effect of stopping it. Here’s an example how to disable a service:

$ sys temct l d i s ab l e ntpd . s e r v i c e

On traditional Fedora systems, this is roughly equivalent to the following
command:

$ chkconf ig ntpd o f f

And here too, on Fedora 15, the latter command will be transparently
converted to the former, if necessary.

Often you want to combine stopping and disabling a service, to get rid of
the current instance and make sure it is not started again (except when
manually triggered):

$ sys temct l d i s ab l e ntpd . s e r v i c e
$ sys temct l stop ntpd . s e r v i c e

Commands like this are for example used during package deinstallation of
systemd services on Fedora.

Disabling a service is a permanent change; until you undo it it will be
kept, even across reboots.

3. You can mask a service. This is like disabling a service, but on steroids.
It not only makes sure that service is not started automatically anymore,
but even ensures that a service cannot even be started manually anymore.
This is a bit of a hidden feature in systemd, since it is not commonly
useful and might be confusing the user. But here’s how you do it:

$ ln −s /dev/ nu l l / e tc / systemd/system/ntpd . s e r v i c e
$ sys temct l daemon−r e l oad

By symlinking a service file to /dev/null you tell systemd to never start
the service in question and completely block its execution. Unit files
stored in /etc/systemd/system override those from /lib/systemd/system
that carry the same name. The former directory is administrator territory,
the latter terroritory of your package manager. By installing your sym-
link in /etc/systemd/system/ntpd.service you hence make sure that sys-
temd will never read the upstream shipped service file /lib/systemd/sys-
tem/ntpd.service.

systemd will recognize units symlinked to /dev/null and show them as
masked. If you try to start such a service manually (via systemctl start
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for example) this will fail with an error.

A similar trick on SysV systems does not (officially) exist. However, there
are a few unofficial hacks, such as editing the init script and placing an exit
0 at the top, or removing its execution bit. However, these solutions have
various drawbacks, for example they interfere with the package manager.

Masking a service is a permanent change, much like disabling a service.

Now that we learned how to turn off services on three levels, there’s only one
question left: how do we turn them on again? Well, it’s quite symmetric. use
systemctl start to undo systemctl stop. Use systemctl enable to undo systemctl
disable and use rm to undo ln.

8 Changing Roots

As administrator or developer sooner or later you’ll ecounter chroot() environ-
ments. The chroot() system call simply shifts what a process and all its children
consider the root directory /, thus limiting what the process can see of the file
hierarchy to a subtree of it. Primarily chroot() environments have two uses:

1. For security purposes: In this use a specific isolated daemon is chroot()ed
into a private subdirectory, so that when exploited the attacker can see
only the subdirectory instead of the full OS hierarchy: he is trapped inside
the chroot() jail.

2. To set up and control a debugging, testing, building, installation or recov-
ery image of an OS: For this a whole guest operating system hierarchy is
mounted or bootstraped into a subdirectory of the host OS, and then a
shell (or some other application) is started inside it, with this subdirec-
tory turned into its /. To the shell it appears as if it was running inside
a system that can differ greatly from the host OS. For example, it might
run a different distribution or even a different architecture (Example: host
x86 64, guest i386). The full hierarchy of the host OS it cannot see.

On a classic System-V-based operating system it is relatively easy to use ch-
root() environments. For example, to start a specific daemon for test or other
reasons inside a chroot()-based guest OS tree, mount /proc, /sys and a few
other API file systems into the tree, and then use chroot(1) to enter the chroot,
and finally run the SysV init script via /sbin/service from inside the chroot.

On a systemd-based OS things are not that easy anymore. One of the big
advantages of systemd is that all daemons are guaranteed to be invoked in a
completely clean and independent context which is in no way related to the
context of the user asking for the service to be started. While in sysvinit-based
systems a large part of the execution context (like resource limits, environment
variables and suchlike) is inherited from the user shell invoking the init skript,
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in systemd the user just notifies the init daemon, and the init daemon will
then fork off the daemon in a sane, well-defined and pristine execution context
and no inheritance of the user context parameters takes place. While this is a
formidable feature it actually breaks traditional approaches to invoke a service
inside a chroot() environment: since the actual daemon is always spawned off
PID 1 and thus inherits the chroot() settings from it, it is irrelevant whether the
client which asked for the daemon to start is chroot()ed or not. On top of that,
since systemd actually places its local communications sockets in /run/systemd
a process in a chroot() environment will not even be able to talk to the init sys-
tem (which however is probably a good thing, and the daring can work around
this of course by making use of bind mounts.)

This of course opens the question how to use chroot()s properly in a systemd
environment. And here’s what we came up with for you, which hopefully an-
swers this question thoroughly and comprehensively:

Let’s cover the first usecase first: locking a daemon into a chroot() jail for
security purposes. To begin with, chroot() as a security tool is actually quite
dubious, since chroot() is not a one-way street. It is relatively easy to escape a
chroot() environment, as even the man page points out. Only in combination
with a few other techniques it can be made somewhat secure. Due to that it
usually requires specific support in the applications to chroot() themselves in a
tamper-proof way. On top of that it usually requires a deep understanding of
the chroot()ed service to set up the chroot() environment properly, for example
to know which directories to bind mount from the host tree, in order to make
available all communication channels in the chroot() the service actually needs.
Putting this together, chroot()ing software for security purposes is almost al-
ways done best in the C code of the daemon itself. The developer knows best
(or at least should know best) how to properly secure down the chroot(), and
what the minimal set of files, file systems and directories is the daemon will need
inside the chroot(). These days a number of daemons are capable of doing this,
unfortunately however of those running by default on a normal Fedora installa-
tion only two are doing this: Avahi and RealtimeKit. Both apparently written
by the same really smart dude. Chapeau! ;-) (Verify this easily by running ls -l
/proc/*/root on your system.)

That all said, systemd of course does offer you a way to chroot() specific dae-
mons and manage them like any other with the usual tools. This is supported
via the RootDirectory= option in systemd service files. Here’s an example:

[ Unit ]
Desc r ip t i on=A chroot ( ) ed Se rv i c e

[ Se rv i c e ]
RootDirectory=/srv / chroot / foobar
ExecStartPre=/usr / l o c a l / bin / setup−foobar−chroot . sh
ExecStart=/usr /bin / foobard
RootDirectoryStartOnly=yes

In this example, RootDirectory= configures where to chroot() to before invok-
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ing the daemon binary specified with ExecStart=. Note that the path specified
in ExecStart= needs to refer to the binary inside the chroot(), it is not a path
to the binary in the host tree (i.e. in this example the binary executed is seen
as /srv/chroot/foobar/usr/bin/foobard from the host OS). Before the daemon
is started a shell script setup-foobar-chroot.sh is invoked, whose purpose it is
to set up the chroot environment as necessary, i.e. mount /proc and similar
file systems into it, depending on what the service might need. With the Root-
DirectoryStartOnly= switch we ensure that only the daemon as specified in
ExecStart= is chrooted, but not the ExecStartPre= script which needs to have
access to the full OS hierarchy so that it can bind mount directories from there.
(For more information on these switches see the respective man pages.) If you
place a unit file like this in /etc/systemd/system/foobar.service you can start
your chroot()ed service by typing systemctl start foobar.service. You may then
introspect it with systemctl status foobar.service. It is accessible to the admin-
istrator like any other service, the fact that it is chroot()ed does – unlike on
SysV – not alter how your monitoring and control tools interact with it.

Newer Linux kernels support file system namespaces. These are similar to ch-
root() but a lot more powerful, and they do not suffer by the same security
problems as chroot(). systemd exposes a subset of what you can do with file
system namespaces right in the unit files themselves. Often these are a useful
and simpler alternative to setting up full chroot() environment in a subdirec-
tory. With the switches ReadOnlyDirectories= and InaccessibleDirectories=
you may setup a file system namespace jail for your service. Initially, it will be
identical to your host OS’ file system namespace. By listing directories in these
directives you may then mark certain directories or mount points of the host
OS as read-only or even completely inaccessible to the daemon. Example:

[ Unit ]
Desc r ip t i on=A Serv i c e With No Access to /home

[ Se rv i c e ]
ExecStart=/usr /bin / foobard
I n a c c e s s i b l eD i r e c t o r i e s=/home

This service will have access to the entire file system tree of the host OS with
one exception: /home will not be visible to it, thus protecting the user’s data
from potential exploiters. (See the man page for details on these options.)

File system namespaces are in fact a better replacement for chroot()s in many
many ways. Eventually Avahi and RealtimeKit should probably be updated to
make use of namespaces replacing chroot()s.

So much about the security usecase. Now, let’s look at the other use case:
setting up and controlling OS images for debugging, testing, building, installing
or recovering.

chroot() environments are relatively simple things: they only virtualize the file
system hierarchy. By chroot()ing into a subdirectory a process still has com-
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plete access to all system calls, can kill all processes and shares about everything
else with the host it is running on. To run an OS (or a small part of an OS)
inside a chroot() is hence a dangerous affair: the isolation between host and
guest is limited to the file system, everything else can be freely accessed from
inside the chroot(). For example, if you upgrade a distribution inside a chroot(),
and the package scripts send a SIGTERM to PID 1 to trigger a reexecution of
the init system, this will actually take place in the host OS! On top of that,
SysV shared memory, abstract namespace sockets and other IPC primitives are
shared between host and guest. While a completely secure isolation for testing,
debugging, building, installing or recovering an OS is probably not necessary, a
basic isolation to avoid accidental modifications of the host OS from inside the
chroot() environment is desirable: you never know what code package scripts
execute which might interfere with the host OS.

To deal with chroot() setups for this use systemd offers you a couple of fea-
tures:

First of all, systemctl detects when it is run in a chroot. If so, most of its
operations will become NOPs, with the exception of systemctl enable and sys-
temctl disable. If a package installation script hence calls these two commands,
services will be enabled in the guest OS. However, should a package installation
script include a command like systemctl restart as part of the package upgrade
process this will have no effect at all when run in a chroot() environment.

More importantly however systemd comes out-of-the-box with the systemd-
nspawn tool which acts as chroot(1) on steroids: it makes use of file system
and PID namespaces to boot a simple lightweight container on a file system
tree. It can be used almost like chroot(1), except that the isolation from the
host OS is much more complete, a lot more secure and even easier to use. In
fact, systemd-nspawn is capable of booting a complete systemd or sysvinit OS
in container with a single command. Since it virtualizes PIDs, the init system
in the container can act as PID 1 and thus do its job as normal. In contrast to
chroot(1) this tool will implicitly mount /proc, /sys for you.

Here’s an example how in three commands you can boot a Debian OS on your
Fedora machine inside an nspawn container:

# yum i n s t a l l debootstrap
# debootstrap −−arch=amd64 unstab le debian−t r e e /
# systemd−nspawn −D debian−t r e e /

This will bootstrap the OS directory tree and then simply invoke a shell in it.
If you want to boot a full system in the container, use a command like this:

# systemd−nspawn −D debian−t r e e / / sb in / i n i t

And after a quick bootup you should have a shell prompt, inside a complete
OS, booted in your container. The container will not be able to see any of the
processes outside of it. It will share the network configuration, but not be able

18

https://0pointer.de/public/systemd-man/systemd-nspawn.html
https://0pointer.de/public/systemd-man/systemd-nspawn.html


to modify it. (Expect a couple of EPERMs during boot for that, which however
should not be fatal). Directories like /sys and /proc/sys are available in the con-
tainer, but mounted read-only in order to avoid that the container can modify
kernel or hardware configuration. Note however that this protects the host OS
only from accidental changes of its parameters. A process in the container can
manually remount the file systems read-writeable and then change whatever it
wants to change.

So, what’s so great about systemd-nspawn again?

1. It’s really easy to use. No need to manually mount /proc and /sys into
your chroot() environment. The tool will do it for you and the kernel
automatically cleans it up when the container terminates.

2. The isolation is much more complete, protecting the host OS from acci-
dental changes from inside the container.

3. It’s so good that you can actually boot a full OS in the container, not just
a single lonesome shell.

4. It’s actually tiny and installed everywhere where systemd is installed. No
complicated installation or setup.

systemd itself has been modified to work very well in such a container. For
example, when shutting down and detecting that it is run in a container, it just
calls exit(), instead of reboot() as last step.

Note that systemd-nspawn is not a full container solution. If you need that
LXC is the better choice for you. It uses the same underlying kernel technology
but offers a lot more, including network virtualization. If you so will, systemd-
nspawn is the GNOME 3 of container solutions: slick and trivially easy to use
– but with few configuration options. LXC OTOH is more like KDE: more
configuration options than lines of code. I wrote systemd-nspawn specifically
to cover testing, debugging, building, installing, recovering. That’s what you
should use it for and what it is really good at, and where it is a much much
nicer alternative to chroot(1).

So, let’s get this finished, this was already long enough. Here’s what to take
home from this little blog story:

1. Secure chroot()s are best done natively in the C sources of your program.

2. ReadOnlyDirectories=, InaccessibleDirectories= might be suitable alter-
natives to a full chroot() environment.

3. RootDirectory= is your friend if you want to chroot() a specific service.

4. systemd-nspawn is made of awesome.

5. chroot()s are lame, file system namespaces are totally l33t.

All of this is readily available on your Fedora 15 system.
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9 The Blame Game

Fedora 15[1] is the first Fedora release to sport systemd. Our primary goal for
F15 was to get everything integrated and working well. One focus for Fedora
16 will be to further polish and speed up what we have in the distribution now.
To prepare for this cycle we have implemented a few tools (which are already
available in F15), which can help us pinpoint where exactly the biggest prob-
lems in our boot-up remain. With this blog story I hope to shed some light on
how to figure out what to blame for your slow boot-up, and what to do about
it. We want to allow you to put the blame where the blame belongs: on the
system component responsible.

The first utility is a very simple one: systemd will automatically write a log
message with the time it needed to syslog/kmsg when it finished booting up.

systemd [ 1 ] : Startup f i n i s h e d in 2 s 65ms 924us ( ke rne l )
+ 2 s 828ms 195us ( i n i t r d )
+ 11 s 900ms 471us ( user space )
= 16 s 794ms 590us .

And here’s how you read this: 2s have been spent for kernel initialization, until
the time where the initial RAM disk (initrd, i.e. dracut) was started. A bit less
than 3s have then been spent in the initrd. Finally, a bit less than 12s have
been spent after the actual system init daemon (systemd) has been invoked by
the initrd to bring up userspace. Summing this up the time that passed since
the boot loader jumped into the kernel code until systemd was finished doing
everything it needed to do at boot was a bit less than 17s. This number is nice
and simple to understand – and also easy to misunderstand: it does not include
the time that is spent initializing your GNOME session, as that is outside of the
scope of the init system. Also, in many cases this is just where systemd finished
doing everything it needed to do. Very likely some daemons are still busy doing
whatever they need to do to finish startup when this time is elapsed. Hence:
while the time logged here is a good indication on the general boot speed, it is
not the time the user might feel the boot actually takes.

Also, it is a pretty superficial value: it gives no insight which system com-
ponent systemd was waiting for all the time. To break this up, we introduced
the tool systemd-analyze blame:
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$ systemd−analyze blame
6207ms udev−s e t t l e . s e r v i c e
5228ms cryptsetup@luks . s e r v i c e
735ms NetworkManager . s e r v i c e
642ms avahi−daemon . s e r v i c e
600ms abrtd . s e r v i c e
517ms r tk i t−daemon . s e r v i c e
478ms fedora−storage−i n i t . s e r v i c e
396ms dbus . s e r v i c e
390ms rpcidmapd . s e r v i c e
346ms systemd−tmpf i l e s−setup . s e r v i c e
322ms fedora−s y s i n i t−unhack . s e r v i c e
316ms cups . s e r v i c e
310ms conso le−kit−log−system−s t a r t . s e r v i c e
309ms l i b v i r t d . s e r v i c e
303ms rpcbind . s e r v i c e
298ms ksmtuned . s e r v i c e
288ms lvm2−monitor . s e r v i c e
281ms rpcgssd . s e r v i c e
277ms sshd . s e r v i c e
276ms l i v e s y s . s e r v i c e
267ms i s c s i d . s e r v i c e
236ms mdmonitor . s e r v i c e
234ms n f s l o ck . s e r v i c e
223ms ksm . s e r v i c e
218ms mcelog . s e r v i c e

. . .

This tool lists which systemd unit needed how much time to finish initialization
at boot, the worst offenders listed first. What we can see here is that on this
boot two services required more than 1s of boot time: udev-settle.service and
cryptsetup@luks.service. This tool’s output is easily misunderstood as well, it
does not shed any light on why the services in question actually need this much
time, it just determines that they did. Also note that the times listed here
might be spent ”in parallel”, i.e. two services might be initializing at the same
time and thus the time spent to initialize them both is much less than the sum
of both individual times combined.

Let’s have a closer look at the worst offender on this boot: a service by the
name of udev-settle.service. So why does it take that much time to initialize,
and what can we do about it? This service actually does very little: it just
waits for the device probing being done by udev to finish and then exits. Device
probing can be slow. In this instance for example, the reason for the device
probing to take more than 6s is the 3G modem built into the machine, which
when not having an inserted SIM card takes this long to respond to software
probe requests. The software probing is part of the logic that makes Modem-
Manager work and enables NetworkManager to offer easy 3G setup. An obvious
reflex might now be to blame ModemManager for having such a slow prober.
But that’s actually ill-directed: hardware probing quite frequently is this slow,
and in the case of ModemManager it’s a simple fact that the 3G hardware takes
this long. It is an essential requirement for a proper hardware probing solution
that individual probers can take this much time to finish probing. The actual
culprit is something else: the fact that we actually wait for the probing, in other
words: that udev-settle.service is part of our boot process.

So, why is udev-settle.service part of our boot process? Well, it actually doesn’t
need to be. It is pulled in by the storage setup logic of Fedora: to be precise, by
the LVM, RAID and Multipath setup script. These storage services have not
been implemented in the way hardware detection and probing work today: they
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expect to be initialized at a point in time where ”all devices have been probed”,
so that they can simply iterate through the list of available disks and do their
work on it. However, on modern machinery this is not how things actually
work: hardware can come and hardware can go all the time, during boot and
during runtime. For some technologies it is not even possible to know when the
device enumeration is complete (example: USB, or iSCSI), thus waiting for all
storage devices to show up and be probed must necessarily include a fixed delay
when it is assumed that all devices that can show up have shown up, and got
probed. In this case all this shows very negatively in the boot time: the storage
scripts force us to delay bootup until all potential devices have shown up and
all devices that did got probed – and all that even though we don’t actually
need most devices for anything. In particular since this machine actually does
not make use of LVM, RAID or Multipath![2]

Knowing what we know now we can go and disable udev-settle.service for the
next boots: since neither LVM, RAID nor Multipath is used we can mask the
services in question and thus speed up our boot a little:

# ln −s /dev/ nu l l / e tc / systemd/system/udev−s e t t l e . s e r v i c e
# ln −s /dev/ nu l l / e tc / systemd/system/ fedora−wait−s to rage . s e r v i c e
# ln −s /dev/ nu l l / e tc / systemd/system/ fedora−storage−i n i t . s e r v i c e
# systemct l daemon−r e l oad

After restarting we can measure that the boot is now about 1s faster. Why
just 1s? Well, the second worst offender is cryptsetup here: the machine in
question has an encrypted /home directory. For testing purposes I have stored
the passphrase in a file on disk, so that the boot-up is not delayed because I as
the user am a slow typer. The cryptsetup tool unfortunately still takes more
han 5s to set up the encrypted partition. Being lazy instead of trying to fix
cryptsetup[3] we’ll just tape over it here [4]: systemd will normally wait for all
file systems not marked with the noauto option in /etc/fstab to show up, to be
fscked and to be mounted before proceeding bootup and starting the usual sys-
tem services. In the case of /home (unlike for example /var) we know that it is
needed only very late (i.e. when the user actually logs in). An easy fix is hence to
make the mount point available already during boot, but not actually wait until
cryptsetup, fsck and mount finished running for it. You ask how we can make a
mount point available before actually mounting the file system behind it? Well,
systemd possesses magic powers, in form of the comment=systemd.automount
mount option in /etc/fstab. If you specify it, systemd will create an automount
point at /home and when at the time of the first access to the file system it still
isn’t backed by a proper file system systemd will wait for the device, fsck and
mount it.

And here’s the result with this change to /etc/fstab made:

systemd [ 1 ] : Startup f i n i s h e d in 2 s 47ms 112us ( ke rne l )
+ 2 s 663ms 942us ( i n i t r d )
+ 5 s 540ms 522us ( user space )
= 10 s 251ms 576us .

Nice! With a few fixes we took almost 7s off our boot-time. And these two
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changes are only fixes for the two most superficial problems. With a bit of love
and detail work there’s a lot of additional room for improvements. In fact, on
a different machine, a more than two year old X300 laptop (which even back
then wasn’t the fastest machine on earth) and a bit of decrufting we have boot
times of around 4s (total) now, with a resonably complete GNOME system.
And there’s still a lot of room in it.

systemd-analyze blame is a nice and simple tool for tracking down slow ser-
vices. However, it suffers by a big problem: it does not visualize how the
parallel execution of the services actually diminishes the price one pays for slow
starting services. For that we have prepared systemd-analyize plot for you. Use
it like this:

$ systemd−analyze p lo t > p lo t . svg
$ eog p lo t . svg

It creates pretty graphs, showing the time services spent to start up in relation
to the other services. It currently doesn’t visualize explicitly which services wait
for which ones, but with a bit of guess work this is easily seen nonetheless.

To see the effect of our two little optimizations here are two graphs gener-
ated with systemd-analyze plot, the first before and the other after our change:
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(For the sake of completeness, here are the two complete outputs of systemd-
analyze blame for these two boots: before and after.)

The well-informed reader probably wonders how this relates to Michael Meeks’
bootchart. This plot and bootchart do show similar graphs, that is true.
Bootchart is by far the more powerful tool. It plots in all detail what is hap-
pening during the boot, how much CPU and IO is used. systemd-analyze plot
shows more high-level data: which service took how much time to initialize,
and what needed to wait for it. If you use them both together you’ll have a
wonderful toolset to figure out why your boot is not as fast as it could be.
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Now, before you now take these tools and start filing bugs against the worst
boot-up time offenders on your system: think twice. These tools give you raw
data, don’t misread it. As my optimization example above hopefully shows, the
blame for the slow bootup was not actually with udev-settle.service, and not
with the ModemManager prober run by it either. It is with the subsystem that
pulled this service in in the first place. And that’s where the problem needs to
be fixed. So, file the bugs at the right places. Put the blame where the blame
belongs.

As mentioned, these three utilities are available on your Fedora 15 system out-
of-the-box.

And here’s what to take home from this little blog story:

• systemd-analyze is a wonderful tool and systemd comes with profiling built
in.

• Don’t misread the data these tools generate!

• With two simple changes you might be able to speed up your system by
7s!

• Fix your software if it can’t handle dynamic hardware properly!

• The Fedora default of installing the OS on an enterprise-level storage
managing system might be something to rethink.

10 The New Configuration Files

One of the formidable new features of systemd is that it comes with a complete
set of modular early-boot services that are written in simple, fast, parallelizable
and robust C, replacing the shell ”novels” the various distributions featured
before. Our little Project Zero Shell[1] has been a full success. We currently
cover pretty much everything most desktop and embedded distributions should
need, plus a big part of the server needs:

• Checking and mounting of all file systems

• Updating and enabling quota on all file systems

• Setting the host name

• Configuring the loopback network device

• Loading the SELinux policy and relabelling /run and /dev as necessary
on boot

• Registering additional binary formats in the kernel, such as Java, Mono
and WINE binaries
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• Setting the system locale

• Setting up the console font and keyboard map

• Creating, removing and cleaning up of temporary and volatile files and
directories

• Applying mount options from /etc/fstab to pre-mounted API VFS

• Applying sysctl kernel settings

• Collecting and replaying readahead information

• Updating utmp boot and shutdown records

• Loading and saving the random seed

• Statically loading specific kernel modules

• Setting up encrypted hard disks and partitions

• Spawning automatic gettys on serial kernel consoles

• Maintenance of Plymouth

• Machine ID maintenance

• Setting of the UTC distance for the system clock

On a standard Fedora 15 install, only a few legacy and storage services still
require shell scripts during early boot. If you don’t need those, you can easily
disable them end enjoy your shell-free boot (like I do every day). The shell-less
boot systemd offers you is a unique feature on Linux.

Many of these small components are configured via configuration files in /etc.
Some of these are fairly standardized among distributions and hence support-
ing them in the C implementations was easy and obvious. Examples include:
/etc/fstab, /etc/crypttab or /etc/sysctl.conf. However, for others no standard-
ized file or directory existed which forced us to add ifdef orgies to our sources to
deal with the different places the distributions we want to support store these
things. All these configuration files have in common that they are dead-simple
and there is simply no good reason for distributions to distuingish themselves
with them: they all do the very same thing, just a bit differently.

To improve the situation and benefit from the unifying force that systemd is
we thus decided to read the per-distribution configuration files only as fallbacks
– and to introduce new configuration files as primary source of configuration
wherever applicable. Of course, where possible these standardized configuration
files should not be new inventions but rather just standardizations of the best
distribution-specific configuration files previously used. Here’s a little overview
over these new common configuration files systemd supports on all distributions:

26



• /etc/hostname: the host name for the system. One of the most basic
and trivial system settings. Nonetheless previously all distributions used
different files for this. Fedora used /etc/sysconfig/network, OpenSUSE
/etc/HOSTNAME. We chose to standardize on the Debian configuration
file /etc/hostname.

• /etc/vconsole.conf: configuration of the default keyboard mapping and
console font.

• /etc/locale.conf: configuration of the system-wide locale.

• /etc/modules-load.d/*.conf: a drop-in directory for kernel modules to
statically load at boot (for the very few that still need this).

• /etc/sysctl.d/*.conf: a drop-in directory for kernel sysctl parameters, ex-
tending what you can already do with /etc/sysctl.conf.

• /etc/tmpfiles.d/*.conf: a drop-in directory for configuration of runtime
files that need to be removed/created/cleaned up at boot and during up-
time.

• /etc/binfmt.d/*.conf: a drop-in directory for registration of additional
binary formats for systems like Java, Mono and WINE.

• /etc/os-release: a standardization of the various distribution ID files like
/etc/fedora-release and similar. Really every distribution introduced their
own file here; writing a simple tool that just prints out the name of the lo-
cal distribution usually means including a database of release files to check.
The LSB tried to standardize something like this with the lsb release tool,
but quite frankly the idea of employing a shell script in this is not the
best choice the LSB folks ever made. To rectify this we just decided to
generalize this, so that everybody can use the same file here.

• /etc/machine-id: a machine ID file, superseding D-Bus’ machine ID file.
This file is guaranteed to be existing and valid on a systemd system,
covering also stateless boots. By moving this out of the D-Bus logic it is
hopefully interesting for a lot of additional uses as a unique and stable
machine identifier.

• /etc/machine-info: a new information file encoding meta data about a
host, like a pretty host name and an icon name, replacing stuff like /etc/-
favicon.png and suchlike. This is maintained by systemd-hostnamed.

I is our definite intention to convince you to use these new configuration files in
your configuration tools: if your configuration frontend writes these files instead
of the old ones, it automatically becomes more portable between Linux distri-
butions, and you are helping standardizing Linux. This makes things simpler
to understand and more obvious for users and administrators. Of course, right
now, only systemd-based distributions read these files, but that already covers

27

https://0pointer.de/public/systemd-man/hostname.html
https://0pointer.de/public/systemd-man/vconsole.conf.html
https://0pointer.de/public/systemd-man/locale.conf.html
https://0pointer.de/public/systemd-man/modules-load.d.html
https://0pointer.de/public/systemd-man/sysctl.d.html
https://0pointer.de/public/systemd-man/tmpfiles.d.html
https://0pointer.de/public/systemd-man/binfmt.d.html
https://0pointer.de/public/systemd-man/os-release.html
https://0pointer.de/public/systemd-man/machine-id.html
https://0pointer.de/public/systemd-man/machine-info.html
https://www.freedesktop.org/wiki/Software/systemd/hostnamed


all important distributions in one way or another, except for one. And it’s a bit
of a chicken-and-egg problem: a standard becomes a standard by being used.
In order to gently push everybody to standardize on these files we also want to
make clear that sooner or later we plan to drop the fallback support for the old
configuration files from systemd. That means adoption of this new scheme can
happen slowly and piece by piece. But the final goal of only having one set of
configuration files must be clear.

Many of these configuration files are relevant not only for configuration tools but
also (and sometimes even primarily) in upstream projects. For example, we in-
vite projects like Mono, Java, or WINE to install a drop-in file in /etc/binfmt.d/
from their upstream build systems. Per-distribution downstream support for bi-
nary formats would then no longer be necessary and your platform would work
the same on all distributions. Something similar applies to all software which
need creation/cleaning of certain runtime files and directories at boot, for ex-
ample beneath the /run hierarchy (i.e. /var/run as it used to be known). These
projects should just drop in configuration files in /etc/tmpfiles.d, also from
the upstream build systems. This also helps speeding up the boot process, as
separate per-project SysV shell scripts which implement trivial things like reg-
istering a binary format or removing/creating temporary/volatile files at boot
are no longer necessary. Or another example, where upstream support would
be fantastic: projects like X11 could probably benefit from reading the default
keyboard mapping for its displays from /etc/vconsole.conf.

Of course, I have no doubt that not everybody is happy with our choice of
names (and formats) for these configuration files. In the end we had to pick
something, and from all the choices these appeared to be the most convincing.
The file formats are as simple as they can be, and usually easily written and
read even from shell scripts. That said, /etc/bikeshed.conf could of course also
have been a fantastic configuration file name!

So, help us standardizing Linux! Use the new configuration files!
Adopt them upstream, adopt them downstream, adopt them all across
the distributions!

Oh, and in case you are wondering: yes, all of these files were discussed in
one way or another with various folks from the various distributions. And there
has even been some push towards supporting some of these files even outside of
systemd systems.

11 On /etc/sysconfig and /etc/default

So, here’s a bit of an opinion piece on the /etc/sysconfig/ and /etc/default
directories that exist on the various distributions in one form or another, and
why I believe their use should be faded out. Like everything I say on this blog
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what follows is just my personal opinion, and not the gospel and has nothing
to do with the position of the Fedora project or my employer. The topic of
/etc/sysconfig has been coming up in discussions over and over again. I hope
with this blog story I can explain a bit what we as systemd upstream think
about these files.

A few lines about the historical context: I wasn’t around when /etc/syscon-
fig was introduced – suffice to say it has been around on Red Hat and SUSE
distributions since a long long time. Eventually /etc/default was introduced on
Debian with very similar semantics. Many other distributions know a directory
with similar semantics too, most of them call it either one or the other way. In
fact, even other Unix-OSes sported a directory like this. (Such as SCO. If you
are interested in the details, I am sure a Unix greybeard of your trust can fill in
what I am leaving vague here.) So, even though a directory like this has been
known widely on Linuxes and Unixes, it never has been standardized, neither
in POSIX nor in LSB/FHS. These directories very much are something where
distributions distuingish themselves from each other.

The semantics of /etc/default and /etc/sysconfig are very losely defined only.
What almost all files stored in these directories have in common though is that
they are sourcable shell scripts which primarily consist of environment variable
assignments. Most of the files in these directories are sourced by the SysV init
scripts of the same name. The Debian Policy Manual (9.3.2) and the Fedora
Packaging Guidelines suggest this use of the directories, however both distribu-
tions also have files in them that do not follow this scheme, i.e. that do not
have a matching SysV init script – or not even are shell scripts at all.

Why have these files been introduced? On SysV systems services are started
via init scripts in /etc/rc.d/init.d (or a similar directory). /etc/ is (these days)
considered the place where system configuration is stored. Originally these init
scripts were subject to customization by the administrator. But as they grew
and become complex most distributions no longer considered them true config-
uration files, but more just a special kind of programs. To make customization
easy and guarantee a safe upgrade path the customizable bits hence have been
moved to separate configuration files, which the init scripts then source.

Let’s have a quick look what kind of configuration you can do with these files.
Here’s a short incomprehensive list of various things that can be configured via
environment settings in these source files I found browsing through the directo-
ries on a Fedora and a Debian machine:

• Additional command line parameters for the daemon binaries

• Locale settings for a daemon

• Shutdown time-out for a daemon

• Shutdown mode for a daemon
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• System configuration like system locale, time zone information, console
keyboard

• Redundant system configuration, like whether the RTC is in local timezone

• Firewall configuration data, not in shell format (!)

• CPU affinity for a daemon

• Settings unrelated to boot, for example including information how to in-
stall a new kernel package, how to configure nspluginwrap or whether to
do library prelinking

• Whether a specific service should be started or not

• Networking configuration

• Which kernel modules to statically load

• Whether to halt or power-off on shutdown

• Access modes for device nodes (!)

• A description string for the SysV service (!)

• The user/group ID, umask to run specific daemons as

• Resource limits to set for a specific daemon

• OOM adjustment to set for a specific daemon

Now, let’s go where the beef is: what’s wrong with /etc/sysconfig (resp. /etc/de-
fault)? Why might it make sense to fade out use of these files in a systemd
world?

• For the majority of these files the reason for having them simply does
not exist anymore: systemd unit files are not programs like SysV init
scripts were. Unit files are simple, declarative descriptions, that usually
do not consist of more than 6 lines or so. They can easily be generated,
parsed without a Bourne interpreter and understood by the reader. Also,
they are very easy to modify: just copy them from /lib/systemd/system to
/etc/systemd/system and edit them there, where they will not be modified
by the package manager. The need to separate code and configuration that
was the original reason to introduce these files does not exist anymore, as
systemd unit files do not include code. These files hence now are a solution
looking for a problem that no longer exists.

• They are inherently distribution-specific. With systemd we hope to en-
courage standardization between distributions. Part of this is that we
want that unit files are supplied with upstream, and not just added by
the packager – how it has usually been done in the SysV world. Since
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the location of the directory and the available variables in the files is very
different on each distribution, supporting /etc/sysconfig files in upstream
unit files is not feasible. Configuration stored in these files works against
de-balkanization of the Linux platform.

• Many settings are fully redundant in a systemd world. For example, vari-
ous services support configuration of the process credentials like the user/-
group ID, resource limits, CPU affinity or the OOM adjustment settings.
However, these settings are supported only by some SysV init scripts, and
often have different names if supported in multiple of them. OTOH in sys-
temd, all these settings are available equally and uniformly for all services,
with the same configuration option in unit files.

• Unit files know a large number of easy-to-use process context settings,
that are more comprehensive than what most /etc/sysconfig files offer.

• A number of these settings are entirely questionnabe. For example, the
aforementiond configuration option for the user/group ID a service runs as
is primarily something the distributor has to take care of. There is little to
win for administrators to change these settings, and only the distributor
has the broad overview to make sure that UID/GID and name collisions
do not happen.

• The file format is not ideal. Since the files are usually sourced as shell
scripts, parse errors are very hard to decypher and are not logged along the
other configuration problems of the services. Generally, unknown variable
assignments simply have no effect but this is not warned about. This
makes these files harder to debug than necessary.

• Configuration files sources from shell scripts are subject to the execution
parameters of the interpreter, and it has many: settings like IFS or LANG
tend to modify drastically how shell scripts are parsed and understood.
This makes them fragile.

• Interpretation of these files is slow, since it requires spawning of a shell,
which adds at least one process for each service to be spawned at boot.

• Often, files in /etc/sysconfig are used to ”fake” configuration files for dae-
mons which do not support configuration files natively. This is done by
glueing together command line arguments from these variable assignments
that are then passed to the daemon. In general proper, native configura-
tion files in these daemons are the much prettier solution however. Com-
mand line options like ”-k”, ”-a” or ”-f” are not self-explanatory and have
a very cryptic syntax. Moreover the same switches in many daemons have
(due to the limited vocabulary) often very much contradicting effects. (On
one daemon -f might cause the daemon to daemonize, while on another
one this option turns exactly this behaviour off.) Command lines generally
cannot include sensible comments which most configuration files however
can.
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• A number of configuration settings in /etc/sysconfig are entirely redun-
dant: for example, on many distributions it can be controlled via /etc/syscon-
fig files whether the RTC is in UTC or local time. Such an option already
exists however in the 3rd line of the /etc/adjtime (which is known on all
distributions). Adding a second, redundant, distribution-specific option
overriding this is hence needless and complicates things for no benefit.

• Many of the configuration settings in /etc/sysconfig allow disabling ser-
vices. By this they basically become a second level of enabling/disabling
over what the init system already offers: when a service is enabled with
systemctl enable or chkconfig on these settings override this, and turn the
daemon of even though the init system was configured to start it. This
of course is very confusing to the user/administrator, and brings virtually
no benefit.

• For options like the configuration of static kernel modules to load: there
are nowadays usually much better ways to load kernel modules at boot.
For example, most modules may now be autoloaded by udev when the
right hardware is found. This goes very far, and even includes ACPI and
other high-level technologies. One of the very few exceptions where we
currently do not do kernel module autoloading is CPU feature and model
based autoloading which however will be supported soon too. And even if
your specific module cannot be auto-loaded there’s usually a better way
to statically load it, for example by sticking it in /etc/load-modules.d so
that the administrator can check a standardized place for all statically
loaded modules.

• Last but not least, /etc already is intended to be the place for system
configuration (”Host-specific system configuration” according to FHS). A
subdirectory beneath it called sysconfig to place system configuration in
is hence entirely redundant, already on the language level.

What to use instead? Here are a few recommendations of what to do with these
files in the long run in a systemd world:

• Just drop them without replacement. If they are fully redundant (like
the local/UTC RTC setting) this is should be a relatively easy way out
(well, ignoring the need for compatibility). If systemd natively supports
an equivalent option in the unit files there is no need to duplicate these
settings in sysconfig files. For a list of execution options you may set
for a service check out the respective man pages: systemd.exec(5) and
systemd.service(5). If your setting simply adds another layer where a
service can be disabled, remove it to keep things simple. There’s no need
to have multiple ways to disable a service.

• Find a better place for them. For configuration of the system locale or sys-
tem timezone we hope to gently push distributions into the right direction,
for more details see previous episode of this series.
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• Turn these settings into native settings of the daemon. If necessary add
support for reading native configuration files to the daemon. Thankfully,
most of the stuff we run on Linux is Free Software, so this can relatively
easily be done.

Of course, there’s one very good reason for supporting these files for a bit longer:
compatibility for upgrades. But that’s is really the only one I could come up
with. It’s reason enough to keep compatibility for a while, but I think it is a
good idea to phase out usage of these files at least in new packages.

If compatibility is important, then systemd will still allow you to read these con-
figuration files even if you otherwise use native systemd unit files. If your syscon-
fig file only knows simple options EnvironmentFile=-/etc/sysconfig/foobar (See
systemd.exec(5) for more information about this option.) may be used to im-
port the settings into the environment and use them to put together command
lines. If you need a programming language to make sense of these settings, then
use a programming language like shell. For example, place an short shell script
in /usr/lib/¡your package¿/ which reads these files for compatibility, and then
exec’s the actual daemon binary. Then spawn this script instead of the actual
daemon binary with ExecStart= in the unit file.

12 Instantiated Services

Most services on Linux/Unix are singleton services: there’s usually only one
instance of Syslog, Postfix, or Apache running on a specific system at the same
time. On the other hand some select services may run in multiple instances on
the same host. For example, an Internet service like the Dovecot IMAP service
could run in multiple instances on different IP ports or different local IP ad-
dresses. A more common example that exists on all installations is getty, the
mini service that runs once for each TTY and presents a login prompt on it.
On most systems this service is instantiated once for each of the first six virtual
consoles tty1 to tty6. On some servers depending on administrator configura-
tion or boot-time parameters an additional getty is instantiated for a serial or
virtualizer console. Another common instantiated service in the systemd world
is fsck, the file system checker that is instantiated once for each block device
that needs to be checked. Finally, in systemd socket activated per-connection
services (think classic inetd!) are also implemented via instantiated services: a
new instance is created for each incoming connection. In this installment I hope
to explain a bit how systemd implements instantiated services and how to take
advantage of them as an administrator.

If you followed the previous episodes of this series you are probably aware that
services in systemd are named according to the pattern foobar.service, where
foobar is an identification string for the service, and .service simply a fixed suf-
fix that is identical for all service units. The definition files for these services
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are searched for in /etc/systemd/system and /lib/systemd/system (and possi-
bly other directories) under this name. For instantiated services this pattern
is extended a bit: the service name becomes foobar@quux.service where foobar
is the common service identifier, and quux the instance identifier. Example:
serial-getty@ttyS2.service is the serial getty service instantiated for ttyS2.

Service instances can be created dynamically as needed. Without further con-
figuration you may easily start a new getty on a serial port simply by invoking
a systemctl start command for the new instance:

# systemct l s t a r t s e r i a l−getty@ttyUSB0 . s e r v i c e

If a command like the above is run systemd will first look for a unit config-
uration file by the exact name you requested. If this service file is not found
(and usually it isn’t if you use instantiated services like this) then the instance
id is removed from the name and a unit configuration file by the resulting
template name searched. In other words, in the above example, if the precise
serial-getty@ttyUSB0.service unit file cannot be found, serial-getty@.service is
loaded instead. This unit template file will hence be common for all instances
of this service. For the serial getty we ship a template unit file in systemd
(/lib/systemd/system/serial-getty@.service) that looks something like this:

[ Unit ]
Desc r ip t i on=S e r i a l Getty on %I
BindTo=dev−%i . dev ice
After=dev−%i . dev ice systemd−user−s e s s i o n s . s e r v i c e

[ Se rv i c e ]
ExecStart=−/sb in / agetty −s %I 115200 ,38400 ,9600
Restart=always
RestartSec=0

(Note that the unit template file we actually ship along with systemd for the
serial gettys is a bit longer. If you are interested, have a look at the actual file
which includes additional directives for compatibility with SysV, to clear the
screen and remove previous users from the TTY device. To keep things simple
I have shortened the unit file to the relevant lines here.)

This file looks mostly like any other unit file, with one distinction: the specifiers
%I and %i are used at multiple locations. At unit load time %I and %i are
replaced by systemd with the instance identifier of the service. In our example
above, if a service is instantiated as serial-getty@ttyUSB0.service the specifiers
%I and %i will be replaced by ttyUSB0. If you introspect the instanciated unit
with systemctl status serial-getty@ttyUSB0.service you will see these replace-
ments having taken place:

$ sys temct l s t a tu s s e r i a l−getty@ttyUSB0 . s e r v i c e
s e r i a l−getty@ttyUSB0 . s e r v i c e − Getty on ttyUSB0

Loaded : loaded (/ l i b / systemd/system/ s e r i a l−getty@ . s e r v i c e ; s t a t i c )
Active : a c t i v e ( running ) s i n c e Mon, 26 Sep 2011 04 :20 : 44 +0200; 2 s ago

Main PID : 5443 ( agetty )
CGroup : name=systemd :/ system/getty@ . s e r v i c e /ttyUSB0

5443 / sb in / agetty −s ttyUSB0 115200 ,38400 ,9600

And that is already the core idea of instantiated services in systemd. As you
can see systemd provides a very simple templating system, which can be used
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to dynamically instantiate services as needed. To make effective use of this, a
few more notes:
You may instantiate these services on-the-fly in .wants/ symbolic links in the
file system. For example, to make sure the serial getty on ttyUSB0 is started
automatically at every boot, create a symlink like this:

# ln −s / l i b / systemd/system/ s e r i a l−getty@ . s e r v i c e \
/ etc / systemd/system/ getty . t a rg e t . wants/ s e r i a l−getty@ttyUSB0 . s e r v i c e

systemd will instantiate the symlinked unit file with the instance name specified
in the symlink name.

You cannot instantiate a unit template without specifying an instance iden-
tifier. In other words systemctl start serial-getty@.service will necessarily fail
since the instance name was left unspecified.

Sometimes it is useful to opt-out of the generic template for one specific in-
stance. For these cases make use of the fact that systemd always searches first
for the full instance file name before falling back to the template file name: make
sure to place a unit file under the fully instantiated name in /etc/systemd/sys-
tem and it will override the generic templated version for this specific instance.

The unit file shown above uses %i at some places and %I at others. You may
wonder what the difference between these specifiers are. %i is replaced by the
exact characters of the instance identifier. For %I on the other hand the in-
stance identifier is first passed through a simple unescaping algorithm. In the
case of a simple instance identifier like ttyUSB0 there is no effective difference.
However, if the device name includes one or more slashes (”/”) this cannot be
part of a unit name (or Unix file name). Before such a device name can be used
as instance identifier it needs to be escaped so that ”/” becomes ”-” and most
other special characters (including ”-”) are replaced by ”
xAB” where AB is the ASCII code of the character in hexadecimal notation[1].
Example: to refer to a USB serial port by its bus path we want to use a port
name like serial/by-path/pci-0000:00:1d.0-usb-0:1.4:1.1-port0. The escaped ver-
sion of this name is serial-by
x2dpath-pci
x2d0000:00:1d.0
x2dusb
x2d0:1.4:1.1
x2dport0. %I will then refer to former, %i to the latter. Effectively this means
%i is useful wherever it is necessary to refer to other units, for example to
express additional dependencies. On the other hand %I is useful for usage in
command lines, or inclusion in pretty description strings. Let’s check how this
looks with the above unit file:

# systemct l s t a r t \
’ s e r i a l−get ty@ser i a l−by\x2dpath−pc i\x2d0000 : 0 0 : 1 d .0\ x2dusb
\x2d0 : 1 . 4 : 1 . 1 \ x2dport0 . s e rv i c e ’
# systemct l s t a tu s \
’ s e r i a l−get ty@ser i a l−by\x2dpath−pc i\x2d0000 : 0 0 : 1 d .0\ x2dusb
\x2d0 : 1 . 4 : 1 . 1 \ x2dport0 . s e rv i c e ’
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s e r i a l−get ty@ser i a l−by\x2dpath−pc i\x2d0000 : 0 0 : 1 d .0\ x2dusb
\x2d0 : 1 . 4 : 1 . 1 \ x2dport0 . s e r v i c e \
− S e r i a l Getty on s e r i a l /by−path/pci −0000:00:1d.0−usb−0:1.4:1.1− port0

Loaded : loaded (/ l i b / systemd/system/ s e r i a l−getty@ . s e r v i c e ; s t a t i c )
Active : a c t i v e ( running ) s i n c e Mon, 26 Sep 2011 05 :08 : 52 +0200; 1 s ago
Main PID : 5788 ( agetty )
CGroup :

name=systemd :/ system/ s e r i a l−getty@ . s e r v i c e / s e r i a l−by
\x2dpath−pc i\x2d0000 : 0 0 : 1 d .0\ x2dusb\x2d0 : 1 . 4 : 1 . 1 \ x2dport0

5788 / sb in / agetty −s s e r i a l /by−path/pci −0000:00:
1d.0−usb−0:1.4:1.1− port0 115200 38400 9600

As we can see the while the instance identifier is the escaped string the command
line and the description string actually use the unescaped version, as expected.

(Side note: there are more specifiers available than just %i and %I, and many
of them are actually available in all unit files, not just templates for service
instances. For more details see the man page which includes a full list and terse
explanations.)

And at this point this shall be all for now. Stay tuned for a follow-up arti-
cle on how instantiated services are used for inetd-style socket activation.

13 Converting inetd Services

In a previous episode of this series I covered how to convert a SysV init script to
a systemd unit file. In this story I hope to explain how to convert inetd services
into systemd units.

Let’s start with a bit of background. inetd has a long tradition as one of the
classic Unix services. As a superserver it listens on an Internet socket on behalf
of another service and then activate that service on an incoming connection,
thus implementing an on-demand socket activation system. This allowed Unix
machines with limited resources to provide a large variety of services, without
the need to run processes and invest resources for all of them all of the time.
Over the years a number of independent implementations of inetd have been
shipped on Linux distributions. The most prominent being the ones based on
BSD inetd and xinetd. While inetd used to be installed on most distributions by
default, it nowadays is used only for very few selected services and the common
services are all run unconditionally at boot, primarily for (perceived) perfor-
mance reasons.

One of the core feature of systemd (and Apple’s launchd for the matter) is
socket activation, a scheme pioneered by inetd, however back then with a differ-
ent focus. Systemd-style socket activation focusses on local sockets (AF UNIX),
not so much Internet sockets (AF INET), even though both are supported. And
more importantly even, socket activation in systemd is not primarily about the
on-demand aspect that was key in inetd, but more on increasing parallelization
(socket activation allows starting clients and servers of the socket at the same
time), simplicity (since the need to configure explicit dependencies between ser-
vices is removed) and robustness (since services can be restarted or may crash
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without loss of connectivity of the socket). However, systemd can also activate
services on-demand when connections are incoming, if configured that way.

Socket activation of any kind requires support in the services themselves. sys-
temd provides a very simple interface that services may implement to provide
socket activation, built around sd listen fds(). As such it is already a very min-
imal, simple scheme. However, the traditional inetd interface is even simpler.
It allows passing only a single socket to the activated service: the socket fd is
simply duplicated to STDIN and STDOUT of the process spawned, and that’s
already it. In order to provide compatibility systemd optionally offers the same
interface to processes, thus taking advantage of the many services that already
support inetd-style socket activation, but not yet systemd’s native activation.

Before we continue with a concrete example, let’s have a look at three different
schemes to make use of socket activation:

1. Socket activation for parallelization, simplicity, robustness: sockets are
bound during early boot and a singleton service instance to serve all client
requests is immediately started at boot. This is useful for all services that
are very likely used frequently and continously, and hence starting them
early and in parallel with the rest of the system is advisable. Examples:
D-Bus, Syslog.

2. On-demand socket activation for singleton services: sockets are bound
during early boot and a singleton service instance is executed on incoming
traffic. This is useful for services that are seldom used, where it is advisable
to save the resources and time at boot and delay activation until they are
actually needed. Example: CUPS.

3. On-demand socket activation for per-connection service instances: sockets
are bound during early boot and for each incoming connection a new
service instance is instantiated and the connection socket (and not the
listening one) is passed to it. This is useful for services that are seldom
used, and where performance is not critical, i.e. where the cost of spawning
a new service process for each incoming connection is limited. Example:
SSH.

The three schemes provide different performance characteristics. After the ser-
vice finishes starting up the performance provided by the first two schemes is
identical to a stand-alone service (i.e. one that is started without a super-server,
without socket activation), since the listening socket is passed to the actual ser-
vice, and code paths from then on are identical to those of a stand-alone service
and all connections are processes exactly the same way as they are in a stand-
alone service. On the other hand, performance of the third scheme is usually
not as good: since for each connection a new service needs to be started the
resource cost is much higher. However, it also has a number of advantages: for
example client connections are better isolated and it is easier to develop services
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activated this way.

For systemd primarily the first scheme is in focus, however the other two schemes
are supported as well. (In fact, the blog story I covered the necessary code
changes for systemd-style socket activation in was about a service of the second
type, i.e. CUPS). inetd primarily focusses on the third scheme, however the
second scheme is supported too. (The first one isn’t. Presumably due the fo-
cus on the third scheme inetd got its – a bit unfair – reputation for being ”slow”.)

So much about the background, let’s cut to the beef now and show an inetd
service can be integrated into systemd’s socket activation. We’ll focus on SSH, a
very common service that is widely installed and used but on the vast majority
of machines probably not started more often than 1/h in average (and usually
even much less). SSH has supported inetd-style activation since a long time,
following the third scheme mentioned above. Since it is started only every now
and then and only with a limited number of connections at the same time it is
a very good candidate for this scheme as the extra resource cost is negligble: if
made socket-activatable SSH is basically free as long as nobody uses it. And as
soon as somebody logs in via SSH it will be started and the moment he or she
disconnects all its resources are freed again. Let’s find out how to make SSH
socket-activatable in systemd taking advantage of the provided inetd compati-
bility!

Here’s the configuration line used to hook up SSH with classic inetd:

ssh stream tcp nowait root / usr / sb in / sshd sshd −i

And the same as xinetd configuration fragment:

s e r v i c e ssh {
socke t type = stream
pro toco l = tcp
wait = no
user = root
s e rv e r = /usr / sb in / sshd
s e r v e r a r g s = −i

}

Most of this should be fairly easy to understand, as these two fragments express
very much the same information. The non-obvious parts: the port number (22)
is not configured in inetd configuration, but indirectly via the service database
in /etc/services: the service name is used as lookup key in that database and
translated to a port number. This indirection via /etc/services has been part of
Unix tradition though has been getting more and more out of fashion, and the
newer xinetd hence optionally allows configuration with explicit port numbers.
The most interesting setting here is the not very intuitively named nowait (resp.
wait=no) option. It configures whether a service is of the second (wait) resp.
third (nowait) scheme mentioned above. Finally the -i switch is used to enabled
inetd mode in SSH.

The systemd translation of these configuration fragments are the following two
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units. First: sshd.socket is a unit encapsulating information about a socket to
listen on:

[ Unit ]
Desc r ip t i on=SSH Socket f o r Per−Connection Server s

[ Socket ]
ListenStream=22
Accept=yes

[ I n s t a l l ]
WantedBy=socke t s . t a rg e t

Most of this should be self-explanatory. A few notes: Accept=yes corresponds
to nowait. It’s hopefully better named, referring to the fact that for nowait
the superserver calls accept() on the listening socket, where for wait this is the
job of the executed service process. WantedBy=sockets.target is used to ensure
that when enabled this unit is activated at boot at the right time.

And here’s the matching service file sshd@.service:

[ Unit ]
Desc r ip t i on=SSH Per−Connection Server

[ Se rv i c e ]
ExecStart=−/usr / sb in / sshd −i
StandardInput=socket

This too should be mostly self-explanatory. Interesting is StandardInput=socket,
the option that enables inetd compatibility for this service. StandardInput=
may be used to configure what STDIN of the service should be connected for
this service (see the man page for details). By setting it to socket we make
sure to pass the connection socket here, as expected in the simple inetd inter-
face. Note that we do not need to explicitly configure StandardOutput= here,
since by default the setting from StandardInput= is inherited if nothing else
is configured. Important is the ”-” in front of the binary name. This ensures
that the exit status of the per-connection sshd process is forgotten by systemd.
Normally, systemd will store the exit status of a all service instances that die
abnormally. SSH will sometimes die abnormally with an exit code of 1 or simi-
lar, and we want to make sure that this doesn’t cause systemd to keep around
information for numerous previous connections that died this way (until this
information is forgotten with systemctl reset-failed).

sshd@.service is an instantiated service, as described in the preceeding install-
ment of this series. For each incoming connection systemd will instantiate a
new instance of sshd@.service, with the instance identifier named after the con-
nection credentials.

You may wonder why in systemd configuration of an inetd service requires
two unit files instead of one. The reason for this is that to simplify things we
want to make sure that the relation between live units and unit files is obvious,
while at the same time we can order the socket unit and the service units inde-
pendently in the dependency graph and control the units as independently as
possible. (Think: this allows you to shutdown the socket independently from
the instances, and each instance individually.)
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Now, let’s see how this works in real life. If we drop these files into /etc/sys-
temd/system we are ready to enable the socket and start it:

# systemct l enable sshd . socket
ln −s ’/ e tc / systemd/system/ sshd . socket ’ \

’/ e tc / systemd/system/ socke t s . t a rg e t . wants/ sshd . socket ’
# systemct l s t a r t sshd . socket
# systemct l s t a tu s sshd . socket
sshd . socket − SSH Socket f o r Per−Connection Server s

Loaded : loaded (/ etc / systemd/system/ sshd . socket ; enabled )
Active : a c t i v e ( l i s t e n i n g ) s i n c e Mon, 26 Sep 2011 20 :24 : 31 +0200; 14 s ago

Accepted : 0 ; Connected : 0
CGroup : name=systemd :/ system/ sshd . socket

This shows that the socket is listening, and so far no connections have been made
(Accepted: will show you how many connections have been made in total since
the socket was started, Connected: how many connections are currently active.)

Now, let’s connect to this from two different hosts, and see which services are
now active:

$ sys temct l −− f u l l | grep ssh
sshd@172 . 3 1 . 0 . 5 2 : 2 2 −172 . 3 1 . 0 . 4 : 4 7779 . s e r v i c e loaded ac t i v e running
sshd@172 . 31 . 0 . 5 2 : 2 2 −172 . 3 1 . 0 . 5 4 : 5 2985 . s e r v i c e loaded ac t i v e running
sshd . socket loaded ac t i v e l i s t e n i n g

As expected, there are now two service instances running, for the two connec-
tions, and they are named after the source and destination address of the TCP
connection as well as the port numbers. (For AF UNIX sockets the instance
identifier will carry the PID and UID of the connecting client.) This allows
us to invidiually introspect or kill specific sshd instances, in case you want to
terminate the session of a specific client:

# systemct l k i l l sshd@172 . 31 . 0 . 5 2 : 2 2 −172 . 3 1 . 0 . 4 : 4 7779 . s e r v i c e

And that’s probably already most of what you need to know for hooking up
inetd services with systemd and how to use them afterwards.

In the case of SSH it is probably a good suggestion for most distributions in or-
der to save resources to default to this kind of inetd-style socket activation, but
provide a stand-alone unit file to sshd as well which can be enabled optionally.
I’ll soon file a wishlist bug about this against our SSH package in Fedora.

A few final notes on how xinetd and systemd compare feature-wise, and whether
xinetd is fully obsoleted by systemd. The short answer here is that systemd does
not provide the full xinetd feature set and that is does not fully obsolete xinetd.
The longer answer is a bit more complex: if you look at the multitude of options
xinetd provides you’ll notice that systemd does not compare. For example, sys-
temd does not come with built-in echo, time, daytime or discard servers, and
never will include those. TCPMUX is not supported, and neither are RPC
services. However, you will also find that most of these are either irrelevant
on today’s Internet or became other way out-of-fashion. The vast majority of
inetd services do not directly take advantage of these additional features. In
fact, none of the xinetd services shipped on Fedora make use of these options.
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That said, there are a couple of useful features that systemd does not support,
for example IP ACL management. However, most administrators will proba-
bly agree that firewalls are the better solution for these kinds of problems and
on top of that, systemd supports ACL management via tcpwrap for those who
indulge in retro technologies like this. On the other hand systemd also pro-
vides numerous features xinetd does not provide, starting with the individual
control of instances shown above, or the more expressive configurability of the
execution context for the instances. I believe that what systemd provides is
quite comprehensive, comes with little legacy cruft but should provide you with
everything you need. And if there’s something systemd does not cover, xinetd
will always be there to fill the void as you can easily run it in conjunction with
systemd. For the majority of uses systemd should cover what is necessary, and
allows you cut down on the required components to build your system from. In
a way, systemd brings back the functionality of classic Unix inetd and turns it
again into a center piece of a Linux system.

14 Securing Your Services

One of the core features of Unix systems is the idea of privilege separation be-
tween the different components of the OS. Many system services run under their
own user IDs thus limiting what they can do, and hence the impact they may
have on the OS in case they get exploited.

This kind of privilege separation only provides very basic protection however,
since in general system services run this way can still do at least as much as
a normal local users, though not as much as root. For security purposes it is
however very interesting to limit even further what services can do, and shut
them off a couple of things that normal users are allowed to do.

A great way to limit the impact of services is by employing MAC technolo-
gies such as SELinux. If you are interested to secure down your server, running
SELinux is a very good idea. systemd enables developers and administrators to
apply additional restrictions to local services independently of a MAC. Thus,
regardless whether you are able to make use of SELinux you may still enforce
certain security limits on your services.

In this iteration of the series we want to focus on a couple of these security
features of systemd and how to make use of them in your services. These fea-
tures take advantage of a couple of Linux-specific technologies that have been
available in the kernel for a long time, but never have been exposed in a widely
usable fashion. These systemd features have been designed to be as easy to use
as possible, in order to make them attractive to administrators and upstream
developers:

1. Isolating services from the network
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2. Service-private /tmp

3. Making directories appear read-only or inaccessible to services

4. Taking away capabilities from services

5. Disallowing forking, limiting file creation for services

6. Controlling device node access of services

All options described here are documented in systemd’s man pages, notably
systemd.exec(5). Please consult these man pages for further details.

All these options are available on all systemd systems, regardless if SELinux
or any other MAC is enabled, or not.

All these options are relatively cheap, so if in doubt use them. Even if you
might think that your service doesn’t write to /tmp and hence enabling Pri-
vateTmp=yes (as described below) might not be necessary, due to today’s com-
plex software it’s still beneficial to enable this feature, simply because libraries
you link to (and plug-ins to those libraries) which you do not control might need
temporary files after all. Example: you never know what kind of NSS module
your local installation has enabled, and what that NSS module does with /tmp.

These options are hopefully interesting both for administrators to secure their lo-
cal systems, and for upstream developers to ship their services secure by default.
We strongly encourage upstream developers to consider using these options by
default in their upstream service units. They are very easy to make use of and
have major benefits for security.

14.1 Isolating Services from the Network

A very simple but powerful configuration option you may use in systemd service
definitions is PrivateNetwork=:

. . .
[ S e rv i c e ]
ExecStart = . . .
PrivateNetwork=yes
. . .

With this simple switch a service and all the processes it consists of are entirely
disconnected from any kind of networking. Network interfaces became unavail-
able to the processes, the only one they’ll see is the loopback device ”lo”, but it
is isolated from the real host loopback. This is a very powerful protection from
network attacks.

Caveat: Some services require the network to be operational. Of course, nobody
would consider using PrivateNetwork=yes on a network-facing service such as
Apache. However even for non-network-facing services network support might
be necessary and not always obvious. Example: if the local system is configured
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for an LDAP-based user database doing glibc name lookups with calls such as
getpwnam() might end up resulting in network access. That said, even in those
cases it is more often than not OK to use PrivateNetwork=yes since user IDs
of system service users are required to be resolvable even without any network
around. That means as long as the only user IDs your service needs to resolve
are below the magic 1000 boundary using PrivateNetwork=yes should be OK.

Internally, this feature makes use of network namespaces of the kernel. If enabled
a new network namespace is opened and only the loopback device configured in
it.

14.2 Service-Private /tmp

Another very simple but powerful configuration switch is PrivateTmp=:

. . .
[ S e rv i c e ]
ExecStart = . . .
PrivateTmp=yes
. . .

If enabled this option will ensure that the /tmp directory the service will see is
private and isolated from the host system’s /tmp. /tmp traditionally has been a
shared space for all local services and users. Over the years it has been a major
source of security problems for a multitude of services. Symlink attacks and DoS
vulnerabilities due to guessable /tmp temporary files are common. By isolating
the service’s /tmp from the rest of the host, such vulnerabilities become moot.

For Fedora 17 a feature has been accepted in order to enable this option across
a large number of services.

Caveat: Some services actually misuse /tmp as a location for IPC sockets and
other communication primitives, even though this is almost always a vulnerabil-
ity (simply because if you use it for communication you need guessable names,
and guessable names make your code vulnerable to DoS and symlink attacks)
and /run is the much safer replacement for this, simply because it is not a
location writable to unprivileged processes. For example, X11 places it’s com-
munication sockets below /tmp (which is actually secure – though still not ideal
– in this exception since it does so in a safe subdirectory which is created at early
boot.) Services which need to communicate via such communication primitives
in /tmp are no candidates for PrivateTmp=. Thankfully these days only very
few services misusing /tmp like this remain.

Internally, this feature makes use of file system namespaces of the kernel. If
enabled a new file system namespace is opened inheritng most of the host hier-
archy with the exception of /tmp.
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14.3 Making Directories Appear Read-Only or Inaccessi-
ble to Services

With the ReadOnlyDirectories= and InaccessibleDirectories= options it is pos-
sible to make the specified directories inaccessible for writing resp. both reading
and writing to the service:

. . .
[ S e rv i c e ]
ExecStart = . . .
I n a c c e s s i b l eD i r e c t o r i e s=/home
ReadOnlyDirector ies=/var
. . .

With these two configuration lines the whole tree below /home becomes inac-
cessible to the service (i.e. the directory will appear empty and with 000 access
mode), and the tree below /var becomes read-only.

Caveat: Note that ReadOnlyDirectories= currently is not recursively applied to
submounts of the specified directories (i.e. mounts below /var in the example
above stay writable). This is likely to get fixed soon.

Internally, this is also implemented based on file system namspaces.

14.4 Taking Away Capabilities From Services

Another very powerful security option in systemd is CapabilityBoundingSet=
which allows to limit in a relatively fine grained fashion which kernel capabilities
a service started retains:

. . .
[ S e rv i c e ]
ExecStart = . . .
Capabi l i tyBoundingSet=CAPCHOWN CAP KILL
. . .

In the example above only the CAP CHOWN and CAP KILL capabilities are
retained by the service, and the service and any processes it might create
have no chance to ever acquire any other capabilities again, not even via se-
tuid binaries. The list of currently defined capabilities is available in capabili-
ties(7). Unfortunately some of the defined capabilities are overly generic (such
as CAP SYS ADMIN), however they are still a very useful tool, in particular
for services that otherwise run with full root privileges.

To identify precisely which capabilities are necessary for a service to run cleanly
is not always easy and requires a bit of testing. To simplify this process a bit, it
is possible to blacklist certain capabilities that are definitely not needed instead
of whitelisting all that might be needed. Example: the CAP SYS PTRACE
is a particularly powerful and security relevant capability needed for the im-
plementation of debuggers, since it allows introspecting and manipulating any
local process on the system. A service like Apache obviously has no business in
being a debugger for other processes, hence it is safe to remove the capability
from it:
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. . .
[ S e rv i c e ]
ExecStart = . . .
Capabi l i tyBoundingSet=˜CAP SYS PTRACE
. . .

The character the value assignment here is prefixed with inverts the meaning
of the option: instead of listing all capabalities the service will retain you may
list the ones it will not retain.

Caveat: Some services might react confused if certain capabilities are made
unavailable to them. Thus when determining the right set of capabilities to
keep around you need to do this carefully, and it might be a good idea to talk
to the upstream maintainers since they should know best which operations a
service might need to run successfully.

Caveat 2: Capabilities are not a magic wand. You probably want to com-
bine them and use them in conjunction with other security options in order to
make them truly useful.

To easily check which processes on your system retain which capabilities use
the pscap tool from the libcap-ng-utils package.

Making use of systemd’s CapabilityBoundingSet= option is often a simple, dis-
coverable and cheap replacement for patching all system daemons individually
to control the capability bounding set on their own.

14.5 Disallowing Forking, Limiting File Creation for Ser-
vices

Resource Limits may be used to apply certain security limits on services being
run. Primarily, resource limits are useful for resource control (as the name
suggests...) not so much access control. However, two of them can be useful
to disable certain OS features: RLIMIT NPROC and RLIMIT FSIZE may be
used to disable forking and disable writing of any files with a size ¿ 0:

. . .
[ S e rv i c e ]
ExecStart = . . .
LimitNPROC=1
LimitFSIZE=0
. . .

Note that this will work only if the service in question drops privileges and runs
under a (non-root) user ID of its own or drops the CAP SYS RESOURCE ca-
pability, for example via CapabilityBoundingSet= as discussed above. Without
that a process could simply increase the resource limit again thus voiding any
effect.

Caveat: LimitFSIZE= is pretty brutal. If the service attempts to write a file
with a size ¿ 0, it will immeidately be killed with the SIGXFSZ which unless
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caught terminates the process. Also, creating files with size 0 is still allowed,
even if this option is used.

For more information on these and other resource limits, see setrlimit(2).

14.6 Controlling Device Node Access of Services

Devices nodes are an important interface to the kernel and its drivers. Since
drivers tend to get much less testing and security checking than the core kernel
they often are a major entry point for security hacks. systemd allows you to
control access to devices individually for each service:

. . .
[ S e rv i c e ]
ExecStart = . . .
DeviceAllow=/dev/ nu l l rw
. . .

This will limit access to /dev/null and only this device node, disallowing access
to any other device nodes.

The feature is implemented on top of the devices cgroup controller.

14.7 Other Options

Besides the easy to use options above there are a number of other security rel-
evant options available. However they usually require a bit of preparation in
the service itself and hence are probably primarily useful for upstream develop-
ers. These options are RootDirectory= (to set up chroot() environments for a
service) as well as User= and Group= to drop privileges to the specified user
and group. These options are particularly useful to greatly simplify writing
daemons, where all the complexities of securely dropping privileges can be left
to systemd, and kept out of the daemons themselves.

If you are wondering why these options are not enabled by default: some of
them simply break seamntics of traditional Unix, and to maintain compatibility
we cannot enable them by default. e.g. since traditional Unix enforced that
/tmp was a shared namespace, and processes could use it for IPC we cannot
just go and turn that off globally, just because /tmp’s role in IPC is now re-
placed by /run.

And that’s it for now. If you are working on unit files for upstream or in
your distribution, please consider using one or more of the options listed above.
If you service is secure by default by taking advantage of these options this will
help not only your users but also make the Internet a safer place.
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15 Log and Service Status

This one is a short episode. One of the most commonly used commands on a
systemd system is systemctl status which may be used to determine the status
of a service (or other unit). It always has been a valuable tool to figure out the
processes, runtime information and other meta data of a daemon running on
the system.

With Fedora 17 we introduced the journal, our new logging scheme that provides
structured, indexed and reliable logging on systemd systems, while providing a
certain degree of compatibility with classic syslog implementations. The origi-
nal reason we started to work on the journal was one specific feature idea, that
to the outsider might appear simple but without the journal is difficult and
inefficient to implement: along with the output of systemctl status we wanted
to show the last 10 log messages of the daemon. Log data is some of the most
essential bits of information we have on the status of a service. Hence it it is an
obvious choice to show next to the general status of the service.

And now to make it short: at the same time as we integrated the journal into
systemd and Fedora we also hooked up systemctl with it. Here’s an example
output:

$ sys temct l s t a tu s avahi−daemon . s e r v i c e
avahi−daemon . s e r v i c e − Avahi mDNS/DNS−SD Stack

Loaded : loaded (/ usr / l i b / systemd/system/avahi−daemon . s e r v i c e ; enabled )
Active : a c t i v e ( running ) s i n c e Fri , 18 May 2012 12 :27 : 37 +0200; 14 s ago

Main PID : 8216 ( avahi−daemon)
Status : ”avahi−daemon 0 . 6 . 3 0 s t a r t i n g up .”
CGroup : name=systemd :/ system/avahi−daemon . s e r v i c e

8216 avahi−daemon : running [ omega . l o c a l ]
8217 avahi−daemon : chroot he lpe r

May 18 12 :27 : 37 omega avahi−daemon [ 8 2 1 6 ] :
Jo in ing mDNS mul t i ca s t group on i n t e r f a c e eth1 . IPv4 with address 1 7 2 . 3 1 . 0 . 5 2 .
May 18 12 :27 : 37 omega avahi−daemon [ 8 2 1 6 ] :
New re l evant i n t e r f a c e eth1 . IPv4 f o r mDNS.
May 18 12 :27 : 37 omega avahi−daemon [ 8 2 1 6 ] :
Network i n t e r f a c e enumeration completed .
May 18 12 :27 : 37 omega avahi−daemon [ 8 2 1 6 ] :
Reg i s t e r i ng new address record f o r 192 . 168 . 122 . 1 on v i rb r0 . IPv4 .
May 18 12 :27 : 37 omega avahi−daemon [ 8 2 1 6 ] :
Reg i s t e r i ng new address record f o r fd00 : : e269 :95 f f : f e87 : e282 on eth1 . ∗ .
May 18 12 :27 : 37 omega avahi−daemon [ 8 2 1 6 ] :
Reg i s t e r i ng new address record f o r 172 . 3 1 . 0 . 5 2 on eth1 . IPv4 .
May 18 12 :27 : 37 omega avahi−daemon [ 8 2 1 6 ] :
Reg i s t e r i ng HINFO record with va lues ’ X86 64 ’ / ’LINUX ’ .
May 18 12 :27 : 38 omega avahi−daemon [ 8 2 1 6 ] :
Server s tar tup complete . Host name i s omega . l o c a l . Local s e r v i c e cook ie i s 3555095952.
May 18 12 :27 : 38 omega avahi−daemon [ 8 2 1 6 ] :
S e rv i c e ”omega” (/ s e r v i c e s / ssh . s e r v i c e ) s u c c e s s f u l l y e s t ab l i s h ed .
May 18 12 :27 : 38 omega avahi−daemon [ 8 2 1 6 ] :
S e rv i c e ”omega” (/ s e r v i c e s / s f tp−ssh . s e r v i c e ) s u c c e s s f u l l y e s t ab l i s h ed .

This, of course, shows the status of everybody’s favourite mDNS/DNS-SD dae-
mon with a list of its processes, along with – as promised – the 10 most recent
log lines. Mission accomplished!

There are a couple of switches available to alter the output slightly and ad-
just it to your needs. The two most interesting switches are -f to enable follow
mode (as in tail -f) and -n to change the number of lines to show (you guessed
it, as in tail -n).
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The log data shown comes from three sources: everything any of the daemon’s
processes logged with libc’s syslog() call, everything submitted using the native
Journal API, plus everything any of the daemon’s processes logged to STDOUT
or STDERR. In short: everything the daemon generates as log data is collected,
properly interleaved and shown in the same format.

And that’s it already for today. It’s a very simple feature, but an immensely
useful one for every administrator. One of the kind ”Why didn’t we already do
this 15 years ago?”.

16 The Self-Explanatory Boot

One complaint we often hear about systemd is that its boot process was hard
to understand, even incomprehensible. In general I can only disagree with this
sentiment, I even believe in quite the opposite: in comparison to what we had
before – where to even remotely understand what was going on you had to have
a decent comprehension of the programming language that is Bourne Shell[1] –
understanding systemd’s boot process is substantially easier. However, like in
many complaints there is some truth in this frequently heard discomfort: for a
seasoned Unix administrator there indeed is a bit of learning to do when the
switch to systemd is made. And as systemd developers it is our duty to make
the learning curve shallow, introduce as few surprises as we can, and provide
good documentation where that is not possible.

systemd always had huge body of documentation as manual pages (nearly 100
individual pages now!), in the Wiki and the various blog stories I posted. How-
ever, any amount of documentation alone is not enough to make software easily
understood. In fact, thick manuals sometimes appear intimidating and make
the reader wonder where to start reading, if all he was interested in was this
one simple concept of the whole system.

Acknowledging all this we have now added a new, neat, little feature to sys-
temd: the self-explanatory boot process. What do we mean by that? Simply
that each and every single component of our boot comes with documentation
and that this documentation is closely linked to its component, so that it is easy
to find.

More specifically, all units in systemd (which are what encapsulate the com-
ponents of the boot) now include references to their documentation, the doc-
umentation of their configuration files and further applicable manuals. A user
who is trying to understand the purpose of a unit, how it fits into the boot
process and how to configure it can now easily look up this documentation with
the well-known systemctl status command. Here’s an example how this looks
for systemd-logind.service:

$ sys temct l s t a tu s systemd−l og ind . s e r v i c e
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systemd−l og ind . s e r v i c e − Login Se rv i c e
Loaded : loaded (/ usr / l i b / systemd/system/systemd−l og ind . s e r v i c e ; s t a t i c )
Active :

a c t i v e ( running ) s i n c e Mon, 25 Jun 2012 22 :39 : 24 +0200; 1 day and 18h ago
Docs : man : systemd−l og ind . s e r v i c e (7)

man : l og ind . conf (5)
http ://www. f r e ede sk top . org /wiki / Software / systemd/mul t i s ea t

Main PID : 562 ( systemd−l og ind )
CGroup : name=systemd :/ system/systemd−l og ind . s e r v i c e

562 / usr / l i b / systemd/systemd−l og ind

Jun 25 22 :39 : 24 ep s i l on systemd−l og ind [ 5 6 2 ] :
Watching system buttons on /dev/ input / event2 (Power Button )
Jun 25 22 :39 : 24 ep s i l on systemd−l og ind [ 5 6 2 ] :
Watching system buttons on /dev/ input / event6 ( Video Bus )
Jun 25 22 :39 : 24 ep s i l on systemd−l og ind [ 5 6 2 ] :
Watching system buttons on /dev/ input / event0 ( Lid Switch )
Jun 25 22 :39 : 24 ep s i l on systemd−l og ind [ 5 6 2 ] :
Watching system buttons on /dev/ input / event1 ( Sleep Button )
Jun 25 22 :39 : 24 ep s i l on systemd−l og ind [ 5 6 2 ] :
Watching system buttons on /dev/ input / event7 (ThinkPad Extra Buttons )
Jun 25 22 :39 : 25 ep s i l on systemd−l og ind [ 5 6 2 ] :
New s e s s i o n 1 o f user gdm.
Jun 25 22 :39 : 25 ep s i l on systemd−l og ind [ 5 6 2 ] :
Linked /tmp/ .X11−unix/X0 to /run/ user /42/X11−d i sp l ay .
Jun 25 22 :39 : 32 ep s i l on systemd−l og ind [ 5 6 2 ] :
New s e s s i o n 2 o f user l ennar t .
Jun 25 22 :39 : 32 ep s i l on systemd−l og ind [ 5 6 2 ] :
Linked /tmp/ .X11−unix/X0 to /run/ user /500/X11−d i sp l ay .
Jun 25 22 :39 : 54 ep s i l on systemd−l og ind [ 5 6 2 ] :
Removed s e s s i o n 1 .

On the first look this output changed very little. If you look closer however
you will find that it now includes one new field: Docs lists references to the
documentation of this service. In this case there are two man page URIs and
one web URL specified. The man pages describe the purpose and configuration
of this service, the web URL includes an introduction to the basic concepts of
this service.

If the user uses a recent graphical terminal implementation it is sufficient to
click on the URIs shown to get the respective documentation[2]. With other
words: it never has been that easy to figure out what a specific component of
our boot is about: just use systemctl status to get more information about it
and click on the links shown to find the documentation.

The past days I have written man pages and added these references for ev-
ery single unit we ship with systemd. This means, with systemctl status you
now have a very easy way to find out more about every single service of the core
OS.

If you are not using a graphical terminal (where you can just click on URIs), a
man page URI in the middle of the output of systemctl status is not the most
useful thing to have. To make reading the referenced man pages easier we have
also added a new command:

sys temct l help systemd−l og ind . s e r v i c e

Which will open the listed man pages right-away, without the need to click any-
thing or copy/paste an URI.

The URIs are in the formats documented by the uri(7) man page. Units may
reference http and https URLs, as well as man and info pages.
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Of course all this doesn’t make everything self-explanatory, simply because the
user still has to find out about systemctl status (and even systemctl in the first
place so that he even knows what units there are); however with this basic
knowledge further help on specific units is in very easy reach.

We hope that this kind of interlinking of runtime behaviour and the match-
ing documentation is a big step forward to make our boot easier to understand.

This functionality is partially already available in Fedora 17, and will show
up in complete form in Fedora 18.

That all said, credit where credit is due: this kind of references to documentation
within the service descriptions is not new, Solaris’ SMF had similar functionality
for quite some time. However, we believe this new systemd feature is certainly
a novelty on Linux, and with systemd we now offer you the best documented
and best self-explaining init system.

Of course, if you are writing unit files for your own packages, please consider
also including references to the documentation of your services and its configu-
ration. This is really easy to do, just list the URIs in the new Documentation=
field in the [Unit] section of your unit files. For details see systemd.unit(5). The
more comprehensively we include links to documentation in our OS services the
easier the work of administrators becomes. (To make sure Fedora makes com-
prehensive use of this functionality I filed a bug on FPC).

Oh, and BTW: if you are looking for a rough overview of systemd’s boot process
here’s another new man page we recently added, which includes a pretty ASCII
flow chart of the boot process and the units involved.

17 Watchdogs

There are three big target audiences we try to cover with systemd: the embed-
ded/mobile folks, the desktop people and the server folks. While the systems
used by embedded/mobile tend to be underpowered and have few resources are
available, desktops tend to be much more powerful machines – but still much
less resourceful than servers. Nonetheless there are surprisingly many features
that matter to both extremes of this axis (embedded and servers), but not the
center (desktops). On of them is support for watchdogs in hardware and soft-
ware.

Embedded devices frequently rely on watchdog hardware that resets it auto-
matically if software stops responding (more specifically, stops signalling the
hardware in fixed intervals that it is still alive). This is required to increase
reliability and make sure that regardless what happens the best is attempted
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to get the system working again. Functionality like this makes little sense on
the desktop[1]. However, on high-availability servers watchdogs are frequently
used, again.

Starting with version 183 systemd provides full support for hardware watchdogs
(as exposed in /dev/watchdog to userspace), as well as supervisor (software)
watchdog support for invidual system services. The basic idea is the following:
if enabled, systemd will regularly ping the watchdog hardware. If systemd or
the kernel hang this ping will not happen anymore and the hardware will auto-
matically reset the system. This way systemd and the kernel are protected from
boundless hangs – by the hardware. To make the chain complete, systemd then
exposes a software watchdog interface for individual services so that they can
also be restarted (or some other action taken) if they begin to hang. This soft-
ware watchdog logic can be configured individually for each service in the ping
frequency and the action to take. Putting both parts together (i.e. hardware
watchdogs supervising systemd and the kernel, as well as systemd supervising
all other services) we have a reliable way to watchdog every single component
of the system.
To make use of the hardware watchdog it is sufficient to set the RuntimeWatch-
dogSec= option in /etc/systemd/system.conf. It defaults to 0 (i.e. no hardware
watchdog use). Set it to a value like 20s and the watchdog is enabled. After
20s of no keep-alive pings the hardware will reset itself. Note that systemd will
send a ping to the hardware at half the specified interval, i.e. every 10s. And
that’s already all there is to it. By enabling this single, simple option you have
turned on supervision by the hardware of systemd and the kernel beneath it.[2]

Note that the hardware watchdog device (/dev/watchdog) is single-user only.
That means that you can either enable this functionality in systemd, or use a
separate external watchdog daemon, such as the aptly named watchdog.

ShutdownWatchdogSec= is another option that can be configured in /etc/sys-
temd/system.conf. It controls the watchdog interval to use during reboots. It
defaults to 10min, and adds extra reliability to the system reboot logic: if a
clean reboot is not possible and shutdown hangs, we rely on the watchdog hard-
ware to reset the system abruptly, as extra safety net.

So much about the hardware watchdog logic. These two options are really
everything that is necessary to make use of the hardware watchdogs. Now, let’s
have a look how to add watchdog logic to individual services.

First of all, to make software watchdog-supervisable it needs to be patched
to send out ”I am alive” signals in regular intervals in its event loop. Patching
this is relatively easy. First, a daemon needs to read the WATCHDOG USEC=
environment variable. If it is set, it will contain the watchdog interval in usec
formatted as ASCII text string, as it is configured for the service. The daemon
should then issue sd notify(”WATCHDOG=1”) calls every half of that interval.
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A daemon patched this way should transparently support watchdog functional-
ity by checking whether the environment variable is set and honouring the value
it is set to.

To enable the software watchdog logic for a service (which has been patched
to support the logic pointed out above) it is sufficient to set the WatchdogSec=
to the desired failure latency. See systemd.service(5) for details on this setting.
This causes WATCHDOG USEC= to be set for the service’s processes and will
cause the service to enter a failure state as soon as no keep-alive ping is received
within the configured interval.

If a service enters a failure state as soon as the watchdog logic detects a hang,
then this is hardly sufficient to build a reliable system. The next step is to con-
figure whether the service shall be restarted and how often, and what to do if it
then still fails. To enable automatic service restarts on failure set Restart=on-
failure for the service. To configure how many times a service shall be attempted
to be restarted use the combination of StartLimitBurst= and StartLimitInter-
val= which allow you to configure how often a service may restart within a time
interval. If that limit is reached, a special action can be taken. This action is
configured with StartLimitAction=. The default is a none, i.e. that no further
action is taken and the service simply remains in the failure state without any
further attempted restarts. The other three possible values are reboot, reboot-
force and reboot-immediate. reboot attempts a clean reboot, going through the
usual, clean shutdown logic. reboot-force is more abrupt: it will not actually try
to cleanly shutdown any services, but immediately kills all remaining services
and unmounts all file systems and then forcibly reboots (this way all file systems
will be clean but reboot will still be very fast). Finally, reboot-immediate does
not attempt to kill any process or unmount any file systems. Instead it just hard
reboots the machine without delay. reboot-immediate hence comes closest to a
reboot triggered by a hardware watchdog. All these settings are documented in
systemd.service(5).

Putting this all together we now have pretty flexible options to watchdog-
supervise a specific service and configure automatic restarts of the service if
it hangs, plus take ultimate action if that doesn’t help.

Here’s an example unit file:

[ Unit ]
Desc r ip t i on=My L i t t l e Daemon
Documentation=man : my l i t t l ed (8)

[ Se rv i c e ]
ExecStart=/usr /bin / my l i t t l ed
WatchdogSec=30s
Restart=on−f a i l u r e
S ta r tL im i t In t e rva l=5min
StartLimitBurst=4
StartLimitAct ion=reboot−f o r c e

This service will automatically be restarted if it hasn’t pinged the system man-
ager for longer than 30s or if it fails otherwise. If it is restarted this way more
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often than 4 times in 5min action is taken and the system quickly rebooted,
with all file systems being clean when it comes up again.

And that’s already all I wanted to tell you about! With hardware watchdog
support right in PID 1, as well as supervisor watchdog support for individual
services we should provide everything you need for most watchdog usecases.
Regardless if you are building an embedded or mobile applience, or if your are
working with high-availability servers, please give this a try!

(Oh, and if you wonder why in heaven PID 1 needs to deal with /dev/watch-
dog, and why this shouldn’t be kept in a separate daemon, then please read this
again and try to understand that this is all about the supervisor chain we are
building here, where the hardware watchdog supervises systemd, and systemd
supervises the individual services. Also, we believe that a service not responding
should be treated in a similar way as any other service error. Finally, pinging
/dev/watchdog is one of the most trivial operations in the OS (basically little
more than a ioctl() call), to the support for this is not more than a handful lines
of code. Maintaining this externally with complex IPC between PID 1 (and
the daemons) and this watchdog daemon would be drastically more complex,
error-prone and resource intensive.)

Note that the built-in hardware watchdog support of systemd does not con-
flict with other watchdog software by default. systemd does not make use of
/dev/watchdog by default, and you are welcome to use external watchdog dae-
mons in conjunction with systemd, if this better suits your needs.

And one last thing: if you wonder whether your hardware has a watchdog,
then the answer is: almost definitely yes – if it is anything more recent than a
few years. If you want to verify this, try the wdctl tool from recent util-linux,
which shows you everything you need to know about your watchdog hardware.

I’d like to thank the great folks from Pengutronix for contributing most of
the watchdog logic. Thank you!

18 Gettys on Serial Consoles (and Elsewhere)

While physical RS232 serial ports have become exotic in today’s PCs they play
an important role in modern servers and embedded hardware. They provide a
relatively robust and minimalistic way to access the console of your device, that
works even when the network is hosed, or the primary UI is unresponsive. VMs
frequently emulate a serial port as well.

Of course, Linux has always had good support for serial consoles, but with
systemd we tried to make serial console support even simpler to use. In the
following text I’ll try to give an overview how serial console gettys on systemd
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work, and how TTYs of any kind are handled.

Let’s start with the key take-away: in most cases, to get a login prompt on
your serial prompt you don’t need to do anything. systemd checks the kernel
configuration for the selected kernel console and will simply spawn a serial getty
on it. That way it is entirely sufficient to configure your kernel console properly
(for example, by adding console=ttyS0 to the kernel command line) and that’s
it. But let’s have a look at the details:

In systemd, two template units are responsible for bringing up a login prompt
on text consoles:

1. getty@.service is responsible for virtual terminal (VT) login prompts, i.e.
those on your VGA screen as exposed in /dev/tty1 and similar devices.

2. serial-getty@.service is responsible for all other terminals, including serial
ports such as /dev/ttyS0. It differs in a couple of ways from getty@.service:
among other things the $TERM environment variable is set to vt102
(hopefully a good default for most serial terminals) rather than linux
(which is the right choice for VTs only), and a special logic that clears the
VT scrollback buffer (and only work on VTs) is skipped.

18.1 Virtual Terminals

Let’s have a closer look how getty@.service is started, i.e. how login prompts on
the virtual terminal (i.e. non-serial TTYs) work. Traditionally, the init system
on Linux machines was configured to spawn a fixed number login prompts at
boot. In most cases six instances of the getty program were spawned, on the
first six VTs, tty1 to tty6.

In a systemd world we made this more dynamic: in order to make things more
efficient login prompts are now started on demand only. As you switch to the
VTs the getty service is instantiated to getty@tty2.service, getty@tty5.service
and so on. Since we don’t have to unconditionally start the getty processes any-
more this allows us to save a bit of resources, and makes start-up a bit faster.
This behaviour is mostly transparent to the user: if the user activates a VT
the getty is started right-away, so that the user will hardly notice that it wasn’t
running all the time. If he then logs in and types ps he’ll notice however that
getty instances are only running for the VTs he so far switched to.

By default this automatic spawning is done for the VTs up to VT6 only (in
order to be close to the traditional default configuration of Linux systems)[1].
Note that the auto-spawning of gettys is only attempted if no other subsystem
took possession of the VTs yet. More specifically, if a user makes frequent use
of fast user switching via GNOME he’ll get his X sessions on the first six VTs,
too, since the lowest available VT is allocated for each session.
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Two VTs are handled specially by the auto-spawning logic: firstly tty1 gets
special treatment: if we boot into graphical mode the display manager takes
possession of this VT. If we boot into multi-user (text) mode a getty is started
on it – unconditionally, without any on-demand logic[2].

Secondly, tty6 is especially reserved for auto-spawned gettys and unavailable
to other subsystems such as X[3]. This is done in order to ensure that there’s
always a way to get a text login, even if due to fast user switching X took
possession of more than 5 VTs.

18.2 Serial Terminals

Handling of login prompts on serial terminals (and all other kind of non-VT
terminals) is different from that of VTs. By default systemd will instantiate
one serial-getty@.service on the main kernel[4] console, if it is not a virtual ter-
minal. The kernel console is where the kernel outputs its own log messages and
is usually configured on the kernel command line in the boot loader via an argu-
ment such as console=ttyS0[5]. This logic ensures that when the user asks the
kernel to redirect its output onto a certain serial terminal, he will automatically
also get a login prompt on it as the boot completes[6]. systemd will also spawn
a login prompt on the first special VM console (that’s /dev/hvc0, /dev/xvc0,
/dev/hvsi0), if the system is run in a VM that provides these devices. This
logic is implemented in a generator called systemd-getty-generator that is run
early at boot and pulls in the necessary services depending on the execution
environment.

In many cases, this automatic logic should already suffice to get you a lo-
gin prompt when you need one, without any specific configuration of systemd.
However, sometimes there’s the need to manually configure a serial getty, for
example, if more than one serial login prompt is needed or the kernel console
should be redirected to a different terminal than the login prompt. To facilitate
this it is sufficient to instantiate serial-getty@.service once for each serial port
you want it to run on[7]:

# systemct l enable s e r i a l−getty@ttyS2 . s e r v i c e
# systemct l s t a r t s e r i a l−getty@ttyS2 . s e r v i c e

And that’s it. This will make sure you get the login prompt on the chosen port
on all subsequent boots, and starts it right-away too.

Sometimes, there’s the need to configure the login prompt in even more detail.
For example, if the default baud rate configured by the kernel is not correct or
other agetty parameters need to be changed. In such a case simply copy the
default unit template to /etc/systemd/system and edit it there:

# cp /usr / l i b / systemd/system/ s e r i a l−getty@ . s e r v i c e \
/ etc / systemd/system/ s e r i a l−getty@ttyS2 . s e r v i c e

# vi / etc / systemd/system/ s e r i a l−getty@ttyS2 . s e r v i c e
. . . . now make your changes to the agetty command l i n e . . .

# ln −s / etc / systemd/system/ s e r i a l−getty@ttyS2 . s e r v i c e \
/ etc / systemd/system/ getty . t a rg e t . wants/
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# systemct l daemon−r e l oad
# systemct l s t a r t s e r i a l−getty@ttyS2 . s e r v i c e

This creates a unit file that is specific to serial port ttyS2, so that you can make
specific changes to this port and this port only.

And this is pretty much all there’s to say about serial ports, VTs and login
prompts on them. I hope this was interesting, and please come back soon for
the next installment of this series!

19 Using the Journal

If you are wondering what the journal is, here’s an explanation in a few words
to get you up to speed: the journal is a component of systemd, that captures
Syslog messages, Kernel log messages, initial RAM disk and early boot messages
as well as messages written to STDOUT/STDERR of all services, indexes them
and makes this available to the user. It can be used in parallel, or in place of a
traditional syslog daemon, such as rsyslog or syslog-ng. For more information,
see the initial announcement.

The journal has been part of Fedora since F17. With Fedora 18 it now has
grown into a reliable, powerful tool to handle your logs. Note however, that on
F17 and F18 the journal is configured by default to store logs only in a small
ring-buffer in /run/log/journal, i.e. not persistent. This of course limits its
usefulness quite drastically but is sufficient to show a bit of recent log history in
systemctl status. For Fedora 19, we plan to change this, and enable persistent
logging by default. Then, journal files will be stored in /var/log/journal and
can grow much larger, thus making the journal a lot more useful.

19.1 Enabling Persistency

In the meantime, on F17 or F18, you can enable journald’s persistent storage
manually:

# mkdir −p /var / log / jou rna l

After that, it’s a good idea to reboot, to get some useful structured data into
your journal to play with. Oh, and since you have the journal now, you don’t
need syslog anymore (unless having /var/log/messages as text file is a necessity
for you.), so you can choose to deinstall rsyslog:

# yum remove r s y s l o g

19.2 Basics

Now we are ready to go. The following text shows a lot of features of systemd
195 as it will be included in Fedora 18[1], so if your F17 can’t do the tricks you
see, please wait for F18. First, let’s start with some basics. To access the logs
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of the journal use the journalctl(1) tool. To have a first look at the logs, just
type in:

# jou r n a l c t l

If you run this as root you will see all logs generated on the system, from
system components the same way as for logged in users. The output you will
get looks like a pixel-perfect copy of the traditional /var/log/messages format,
but actually has a couple of improvements over it:

• Lines of error priority (and higher) will be highlighted red.

• Lines of notice/warning priority will be highlighted bold.

• The timestamps are converted into your local time-zone.

• The output is auto-paged with your pager of choice (defaults to less).

• This will show all available data, including rotated logs.

• Between the output of each boot we’ll add a line clarifying that a new
boot begins now.

Note that in this blog story I will not actually show you any of the output this
generates, I cut that out for brevity – and to give you a reason to try it out
yourself with a current image for F18’s development version with systemd 195.
But I do hope you get the idea anyway.

19.3 Access Control

Browsing logs this way is already pretty nice. But requiring to be root sucks of
course, even administrators tend to do most of their work as unprivileged users
these days. By default, Journal users can only watch their own logs, unless they
are root or in the adm group. To make watching system logs more fun, let’s
add ourselves to adm:

# usermod −a −G adm lennar t

After logging out and back in as lennart I know have access to the full journal
of the system and all users:

$ j o u r n a l c t l

19.4 Live View

If invoked without parameters journalctl will show me the current log database.
Sometimes one needs to watch logs as they grow, where one previously used tail
-f /var/log/messages:

$ j o u r n a l c t l −f

Yes, this does exactly what you expect it to do: it will show you the last ten
logs lines and then wait for changes and show them as they take place.
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19.5 Basic Filtering

When invoking journalctl without parameters you’ll see the whole set of logs,
beginning with the oldest message stored. That of course, can be a lot of data.
Much more useful is just viewing the logs of the current boot:

$ j o u r n a l c t l −b

This will show you only the logs of the current boot, with all the aforementioned
gimmicks mentioned. But sometimes even this is way too much data to process.
So what about just listing all the real issues to care about: all messages of
priority levels ERROR and worse, from the current boot:

$ j o u r n a l c t l −b −p e r r

If you reboot only seldom the -b makes little sense, filtering based on time is
much more useful:

$ j o u r n a l c t l −−s i n c e=yesterday

And there you go, all log messages from the day before at 00:00 in the morning
until right now. Awesome! Of course, we can combine this with -p err or a
similar match. But humm, we are looking for something that happened on the
15th of October, or was it the 16th?

$ j o u r n a l c t l −−s i n c e=2012−10−15 −−un t i l =”2011−10−16 23 :59 :59”

Yupp, there we go, we found what we were looking for. But humm, I noticed
that some CGI script in Apache was acting up earlier today, let’s see what
Apache logged at that time:

$ j o u r n a l c t l −u httpd −−s i n c e =00:00 −−un t i l =9:30

Oh, yeah, there we found it. But hey, wasn’t there an issue with that disk
/dev/sdc? Let’s figure out what was going on there:

$ j o u r n a l c t l /dev/ sdc

OMG, a disk error![2] Hmm, let’s quickly replace the disk before we lose data.
Done! Next! – Hmm, didn’t I see that the vpnc binary made a booboo? Let’s
check for that:

$ j o u r n a l c t l / usr / sb in /vpnc

Hmm, I don’t get this, this seems to be some weird interaction with dhclient,
let’s see both outputs, interleaved:

$ j o u r n a l c t l / usr / sb in /vpnc / usr / sb in / dhc l i en t

That did it! Found it!

19.6 Advanced Filtering

Whew! That was awesome already, but let’s turn this up a notch. Internally
systemd stores each log entry with a set of implicit meta data. This meta data
looks a lot like an environment block, but actually is a bit more powerful: values
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can take binary, large values (though this is the exception, and usually they just
contain UTF-8), and fields can have multiple values assigned (an exception too,
usually they only have one value). This implicit meta data is collected for each
and every log message, without user intervention. The data will be there, and
wait to be used by you. Let’s see how this looks:

$ j o u r n a l c t l −o verbose −n
[ . . . ]
Tue , 2012−10−23 23 :51 : 38 CEST
[ s=ac9e9c423355411d87bf0ba1a9b424e8 ; i =4301;
b=5335 e9cf5d954633bb99aefc0ec38c25 ;m=882ee28d2 ;
t=4ccc0 f98326e6 ; x=f21e8b1b0994d7ee ]

PRIORITY=6
SYSLOG FACILITY=3
MACHINE ID=a91663387a90b89f185d4e860000001a
HOSTNAME=eps i l on
TRANSPORT=sys l og
SYSLOG IDENTIFIER=avahi−daemon
COMM=avahi−daemon
EXE=/usr / sb in /avahi−daemon
SYSTEMD CGROUP=/system/avahi−daemon . s e r v i c e
SYSTEMD UNIT=avahi−daemon . s e r v i c e
SELINUX CONTEXT=system u : system r : avah i t : s0
UID=70
GID=70
CMDLINE=avahi−daemon : r e g i s t e r i n g [ ep s i l on . l o c a l ]

MESSAGE=Join ing mDNS mul t i ca s t group on i n t e r f a c e
wlan0 . IPv4 with address 1 7 2 . 3 1 . 0 . 5 3 .

BOOT ID=5335 e9cf5d954633bb99aefc0ec38c25
PID=27937

SYSLOG PID=27937
SOURCE REALTIME TIMESTAMP=1351029098747042

(I cut out a lot of noise here, I don’t want to make this story overly long. -n
without parameter shows you the last 10 log entries, but I cut out all but the
last.)

With the -o verbose switch we enabled verbose output. Instead of showing
a pixel-perfect copy of classic /var/log/messages that only includes a minimi-
mal subset of what is available we now see all the gory details the journal has
about each entry. But it’s highly interesting: there is user credential informa-
tion, SELinux bits, machine information and more. For a full list of common,
well-known fields, see the man page.

Now, as it turns out the journal database is indexed by all of these fields,
out-of-the-box! Let’s try this out:

$ j o u r n a l c t l UID=70

And there you go, this will show all log messages logged from Linux user ID 70.
As it turns out one can easily combine these matches:

$ j o u r n a l c t l UID=70 UID=71

Specifying two matches for the same field will result in a logical OR combination
of the matches. All entries matching either will be shown, i.e. all messages from
either UID 70 or 71.

$ j o u r n a l c t l HOSTNAME=eps i l on COMM=avahi−daemon

You guessed it, if you specify two matches for different field names, they will
be combined with a logical AND. All entries matching both will be shown now,
meaning that all messages from processes named avahi-daemon and host epsilon.
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But of course, that’s not fancy enough for us. We are computer nerds after
all, we live off logical expressions. We must go deeper!

$ j o u r n a l c t l HOSTNAME=theta UID=70 + HOSTNAME=eps i l on COMM=avahi−daemon

The + is an explicit OR you can use in addition to the implied OR when you
match the same field twice. The line above hence means: show me everything
from host theta with UID 70, or of host epsilon with a process name of avahi-
daemon.

19.7 And now, it becomes magic!

That was already pretty cool, right? Righ! But heck, who can remember all
those values a field can take in the journal, I mean, seriously, who has thaaaat
kind of photographic memory? Well, the journal has:

$ j o u r n a l c t l −F SYSTEMD UNIT

This will show us all values the field SYSTEMD UNIT takes in the database,
or in other words: the names of all systemd services which ever logged into the
journal. This makes it super-easy to build nice matches. But wait, turns out
this all is actually hooked up with shell completion on bash! This gets even
more awesome: as you type your match expression you will get a list of well-
known field names, and of the values they can take! Let’s figure out how to
filter for SELinux labels again. We remember the field name was something
with SELINUX in it, let’s try that:

$ j o u r n a l c t l SE<TAB>

And yupp, it’s immediately completed:

$ j o u r n a l c t l SELINUX CONTEXT=

Cool, but what’s the label again we wanted to match for?

$ j o u r n a l c t l SELINUX CONTEXT=<TAB><TAB>
ke rne l stem u : system r : l o c a l l o g i . .
system u : system r : accountsd t : s0 system u : system r : lvm t : s0 . .
system u : system r : avah i t : s0 system u : system r :modemman . .
system u : system r : b lue too th t : s0 system u : system r : NetworkM . .
system u : system r : chkpwd t : s0−s0 : c0 . c1023 system u : system r : p o l i c y k i . .
system u : system r : chronyd t : s0 system u : system r : r t k i t d a . .
system u : system r : c rond t : s0−s0 : c0 . c1023 system u : system r : s y s l ogd . .
system u : system r : d e v i c e k i t d i s k t : s0 system u : system r : system c . .
system u : system r : dhcpc t : s0 system u : system r : system d . .
system u : system r : dnsmasq t : s0−s0 : c0 . c1023 system u : system r : systemd . .
system u : system r : i n i t t : s0 system u : system r : systemd . .

Ah! Right! We wanted to see everything logged under PolicyKit’s security label:

$ j o u r n a l c t l SELINUX CONTEXT=system u : system r : p o l i c y k i t t : s0

Wow! That was easy! I didn’t know anything related to SELinux could be
thaaat easy! ;-) Of course this kind of completion works with any field, not just
SELinux labels.

So much for now. There’s a lot more cool stuff in journalctl(1) than this. For
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example, it generates JSON output for you! You can match against kernel fields!
You can get simple /var/log/messages-like output but with relative timestamps!
And so much more!

20 Detecting Virtualization

When we started working on systemd we had a closer look on what the various
existing init scripts used on Linux where actually doing. Among other things
we noticed that a number of them where checking explicitly whether they were
running in a virtualized environment (i.e. in a kvm, VMWare, LXC guest or
suchlike) or not. Some init scripts disabled themselves in such cases[1], others
enabled themselves only in such cases[2]. Frequently, it would probably have
been a better idea to check for other conditions rather than explicitly checking
for virtualization, but after looking at this from all sides we came to the con-
clusion that in many cases explicitly conditionalizing services based on detected
virtualization is a valid thing to do. As a result we added a new configuration
option to systemd that can be used to conditionalize services this way: Condi-
tionVirtualization; we also added a small tool that can be used in shell scripts to
detect virtualization: systemd-detect-virt(1); and finally, we added a minimal
bus interface to query this from other applications.

Detecting whether your code is run inside a virtualized environment is actu-
ally not that hard. Depending on what precisely you want to detect it’s little
more than running the CPUID instruction and maybe checking a few files in
/sys and /proc. The complexity is mostly about knowing the strings to look
for, and keeping this list up-to-date. Currently, the the virtualization detection
code in systemd can detect the following virtualization systems:

• Hardware virtualization (i.e. VMs):

– qemu

– kvm

– vmware

– microsoft

– oracle

– xen

– bochs

• Same-Kernel virtualization (i.e containers):

– chroot

– openvz

– lxc

– lxc-libvirt
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– systemd-nspawn

Let’s have a look how one may make use if this functionality.

20.1 Conditionalizing Units

Adding ConditionVirtualization to the [Unit] section of a unit file is enough to
conditionalize it depending on which virtualization is used or whether one is
used at all. Here’s an example:

[ Unit ]
Name=My Foobar Se rv i c e ( runs only only on gues t s )
Cond i t i onV i r tua l i z a t i on=yes

[ Se rv i c e ]
ExecStart=/usr /bin / foobard

Instead of specifiying ”yes” or ”no” it is possible to specify the ID of a specific
virtualization solution (Example: ”kvm”, ”vmware”, ...), or either ”container”
or ”vm” to check whether the kernel is virtualized or the hardware. Also, checks
can be prefixed with an exclamation mark (”!”) to invert a check. For further
details see the manual page.

20.2 In Shell Scripts

In shell scripts it is easy to check for virtualized systems with the systemd-
detect-virt(1) tool. Here’s an example:

i f systemd−detect−v i r t −q ; then
echo ” V i r t u a l i z a t i o n i s used :” ‘ systemd−detect−v i r t ‘

e l s e
echo ”No v i r t u a l i z a t i o n i s used .”

f i

If this tool is run it will return with an exit code of zero (success) if a virtual-
ization solution has been found, non-zero otherwise. It will also print a short
identifier of the used virtualization solution, which can be suppressed with -q.
Also, with the -c and -v parameters it is possible to detect only kernel or only
hardware virtualization environments. For further details see the manual page.

20.3 In Programs

Whether virtualization is available is also exported on the system bus:

$ gdbus c a l l −−system −−dest org . f r e ede sk top . systemd1 \
−−object−path / org / f r e ede sk top /systemd1 \
−−method org . f r e ede sk top .DBus . Prope r t i e s . Get \
org . f r e ede sk top . systemd1 . Manager V i r t u a l i z a t i o n
(< ’ systemd−nspawn ’> ,)

This property contains the empty string if no virtualization is detected. Note
that some container environments cannot be detected directly from unprivileged
code. That’s why we expose this property on the bus rather than providing a
library – the bus implicitly solves the privilege problem quite nicely.

Note that all of this will only ever detect and return information about the
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”inner-most” virtualization solution. If you stack virtualization (”We must go
deeper!”) then these interfaces will expose the one the code is most directly in-
terfacing with. Specifically that means that if a container solution is used inside
of a VM, then only the container is generally detected and returned.

21 Socket Activated Internet Services and OS
Containers

Socket Activation is an important feature of systemd. When we first announced
systemd we already tried to make the point how great socket activation is for
increasing parallelization and robustness of socket services, but also for simpli-
fying the dependency logic of the boot. In this episode I’d like to explain why
socket activation is an important tool for drastically improving how many ser-
vices and even containers you can run on a single system with the same resource
usage. Or in other words, how you can drive up the density of customer sites
on a system while spending less on new hardware.

21.1 Socket Activated Internet Services

First, let’s take a step back. What was socket activation again? – Basically,
socket activation simply means that systemd sets up listening sockets (IP or oth-
erwise) on behalf of your services (without these running yet), and then starts
(activates) the services as soon as the first connection comes in. Depending on
the technology the services might idle for a while after having processed the
connection and possible follow-up connections before they exit on their own, so
that systemd will again listen on the sockets and activate the services again the
next time they are connected to. For the client it is not visible whether the ser-
vice it is interested in is currently running or not. The service’s IP socket stays
continously connectable, no connection attempt ever fails, and all connects will
be processed promptly.

A setup like this lowers resource usage: as services are only running when needed
they only consume resources when required. Many internet sites and services
can benefit from that. For example, web site hosters will have noticed that of
the multitude of web sites that are on the Internet only a tiny fraction gets a
continous stream of requests: the huge majority of web sites still needs to be
available all the time but gets requests only very unfrequently. With a scheme
like socket activation you take benefit of this. By hosting many of these sites on
a single system like this and only activating their services as necessary allows a
large degree of over-commit: you can run more sites on your system than the
available resources actually allow. Of course, one shouldn’t over-commit too
much to avoid contention during peak times.

Socket activation like this is easy to use in systemd. Many modern Internet
daemons already support socket activation out of the box (and for those which
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don’t yet it’s not hard to add). Together with systemd’s instantiated units
support it is easy to write a pair of service and socket templates that then
may be instantiated multiple times, once for each site. Then, (optionally) make
use of some of the security features of systemd to nicely isolate the customer’s
site’s services from each other (think: each customer’s service should only see
the home directory of the customer, everybody else’s directories should be in-
visible), and there you go: you now have a highly scalable and reliable server
system, that serves a maximum of securely sandboxed services at a minimum
of resources, and all nicely done with built-in technology of your OS.

This kind of setup is already in production use in a number of companies. For
example, the great folks at Pantheon are running their scalable instant Drupal
system on a setup that is similar to this. (In fact, Pantheon’s David Strauss
pioneered this scheme. David, you rock!)

21.2 Socket Activated OS Containers

All of the above can already be done with older versions of systemd. If you use
a distribution that is based on systemd, you can right-away set up a system like
the one explained above. But let’s take this one step further. With systemd
197 (to be included in Fedora 19), we added support for socket activating not
only individual services, but entire OS containers. And I really have to say it
at this point: this is stuff I am really excited about. ;-)

Basically, with socket activated OS containers, the host’s systemd instance will
listen on a number of ports on behalf of a container, for example one for SSH,
one for web and one for the database, and as soon as the first connection comes
in, it will spawn the container this is intended for, and pass to it all three sockets.
Inside of the container, another systemd is running and will accept the sockets
and then distribute them further, to the services running inside the container
using normal socket activation. The SSH, web and database services will only
see the inside of the container, even though they have been activated by sockets
that were originally created on the host! Again, to the clients this all is not
visible. That an entire OS container is spawned, triggered by simple network
connection is entirely transparent to the client side.[1]

The OS containers may contain (as the name suggests) a full operating sys-
tem, that might even be a different distribution than is running on the host.
For example, you could run your host on Fedora, but run a number of Debian
containers inside of it. The OS containers will have their own systemd init sys-
tem, their own SSH instances, their own process tree, and so on, but will share
a number of other facilities (such as memory management) with the host.

For now, only systemd’s own trivial container manager, systemd-nspawn has
been updated to support this kind of socket activation. We hope that libvirt-
lxc will soon gain similar functionality. At this point, let’s see in more detail
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how such a setup is configured in systemd using nspawn:

First, please use a tool such as debootstrap or yum’s –installroot to set up
a container OS tree[2]. The details of that are a bit out-of-focus for this story,
there’s plenty of documentation around how to do this. Of course, make sure
you have systemd v197 installed inside the container. For accessing the con-
tainer from the command line, consider using systemd-nspawn itself. After you
configured everything properly, try to boot it up from the command line with
systemd-nspawn’s -b switch.

Assuming you now have a working container that boots up fine, let’s write
a service file for it, to turn the container into a systemd service on the host you
can start and stop. Let’s create /etc/systemd/system/mycontainer.service on
the host:

[ Unit ]
Desc r ip t i on=My l i t t l e conta ine r

[ Se rv i c e ]
ExecStart=/usr /bin /systemd−nspawn −jbD / srv /mycontainer 3
KillMode=proce s s

This service can already be started and stopped via systemctl start and system-
ctl stop. However, there’s no nice way to actually get a shell prompt inside the
container. So let’s add SSH to it, and even more: let’s configure SSH so that a
connection to the container’s SSH port will socket-activate the entire container.
First, let’s begin with telling the host that it shall now listen on the SSH port
of the container. Let’s create /etc/systemd/system/mycontainer.socket on the
host:

[ Unit ]
Desc r ip t i on=The SSH socket o f my l i t t l e conta ine r

[ Socket ]
ListenStream=23

If we start this unit with systemctl start on the host then it will listen on port
23, and as soon as a connection comes in it will activate our container service
we defined above. We pick port 23 here, instead of the usual 22, as our host’s
SSH is already listening on that. nspawn virtualizes the process list and the file
system tree, but does not actually virtualize the network stack, hence we just
pick different ports for the host and the various containers here.

Of course, the system inside the container doesn’t yet know what to do with
the socket it gets passed due to socket activation. If you’d now try to connect
to the port, the container would start-up but the incoming connection would be
immediately closed since the container can’t handle it yet. Let’s fix that!

All that’s necessary for that is teach SSH inside the container socket activa-
tion. For that let’s simply write a pair of socket and service units for SSH. Let’s
create /etc/systemd/system/sshd.socket in the container:

[ Unit ]
Desc r ip t i on=SSH Socket f o r Per−Connection Server s
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[ Socket ]
ListenStream=23
Accept=yes

Then, let’s add the matching SSH service file /etc/systemd/system/sshd@.service
in the container:

[ Unit ]
Desc r ip t i on=SSH Per−Connection Server f o r %I

[ Se rv i c e ]
ExecStart=−/usr / sb in / sshd −i
StandardInput=socket

Then, make sure to hook sshd.socket into the sockets.target so that unit is
started automatically when the container boots up:

ln −s / etc / systemd/system/ sshd . socket / etc / systemd/system/ socke t s . t a rg e t . wants/

And that’s it. If we now activate mycontainer.socket on the host, the host’s
systemd will bind the socket and we can connect to it. If we do this, the host’s
systemd will activate the container, and pass the socket in to it. The con-
tainer’s systemd will then take the socket, match it up with sshd.socket inside
the container. As there’s still our incoming connection queued on it, it will then
immediately trigger an instance of sshd@.service, and we’ll have our login.

And that’s already everything there is to it. You can easily add additional
sockets to listen on to mycontainer.socket. Everything listed therein will be
passed to the container on activation, and will be matched up as good as possi-
ble with all socket units configured inside the container. Sockets that cannot be
matched up will be closed, and sockets that aren’t passed in but are configured
for listening will be bound be the container’s systemd instance.

So, let’s take a step back again. What did we gain through all of this? Well,
basically, we can now offer a number of full OS containers on a single host, and
the containers can offer their services without running continously. The density
of OS containers on the host can hence be increased drastically.

Of course, this only works for kernel-based virtualization, not for hardware
virtualization. i.e. something like this can only be implemented on systems
such as libvirt-lxc or nspawn, but not in qemu/kvm.

If you have a number of containers set up like this, here’s one cool thing the
journal allows you to do. If you pass -m to journalctl on the host, it will au-
tomatically discover the journals of all local containers and interleave them on
display. Nifty, eh?

With systemd 197 you have everything to set up your own socket activated
OS containers on-board. However, there are a couple of improvements we’re
likely to add soon: for example, right now even if all services inside the con-
tainer exit on idle, the container still will stay around, and we really should
make it exit on idle too, if all its services exited and no logins are around. As
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it turns out we already have much of the infrastructure for this around: we
can reuse the auto-suspend functionality we added for laptops: detecting when
a laptop is idle and suspending it then is a very similar problem to detecting
when a container is idle and shutting it down then.

Anyway, this blog story is already way too long. I hope I haven’t lost you
half-way already with all this talk of virtualization, sockets, services, different
OSes and stuff. I hope this blog story is a good starting point for setting up
powerful highly scalable server systems. If you want to know more, consult the
documentation and drop by our IRC channel. Thank you!

22 Container Integration

Since a while containers have been one of the hot topics on Linux. Container
managers such as libvirt-lxc, LXC or Docker are widely known and used these
days. In this blog story I want to shed some light on systemd’s integration points
with container managers, to allow seamless management of services across con-
tainer boundaries.

We’ll focus on OS containers here, i.e. the case where an init system runs
inside the container, and the container hence in most ways appears like an inde-
pendent system of its own. Much of what I describe here is available on pretty
much any container manager that implements the logic described here, including
libvirt-lxc. However, to make things easy we’ll focus on systemd-nspawn, the
mini-container manager that is shipped with systemd itself. systemd-nspawn
uses the same kernel interfaces as the other container managers, however is less
flexible as it is designed to be a container manager that is as simple to use
as possible and ”just works”, rather than trying to be a generic tool you can
configure in every low-level detail. We use systemd-nspawn extensively when
developing systemd.

Anyway, so let’s get started with our run-through. Let’s start by creating a
Fedora container tree in a subdirectory:

# yum −y −−r e l e a s e v e r=20 −−nogpg −− i n s t a l l r o o t=/srv /mycontainer \
−−d i s ab l e r epo = ’∗ ’ −−enablerepo=fedora i n s t a l l systemd passwd yum fedora−r e l e a s e

This downloads a minimal Fedora system and installs it in in /srv/mycontainer.
This command line is Fedora-specific, but most distributions provide similar
functionality in one way or another. The examples section in the systemd-
nspawn(1) man page contains a list of the various command lines for other
distribution.

We now have the new container installed, let’s set an initial root password:

# systemd−nspawn −D / srv /mycontainer
Spawning conta ine r mycontainer on / srv /mycontainer
Press ˆ ] three t imes within 1 s to k i l l conta ine r .
−bash−4.2# passwd
Changing password f o r user root .
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New password :
Retype new password :
passwd : a l l au thent i ca t i on tokens updated s u c c e s s f u l l y .
−bash−4.2# ˆD
Container mycontainer ex i t ed s u c c e s s f u l l y .
#

We use systemd-nspawn here to get a shell in the container, and then use passwd
to set the root password. After that the initial setup is done, hence let’s boot
it up and log in as root with our new password:

$ systemd−nspawn −D / srv /mycontainer −b
Spawning conta ine r mycontainer on / srv /mycontainer .
Press ˆ ] three t imes within 1 s to k i l l conta ine r .
systemd 208 running in system mode .
(+PAM +LIBWRAP +AUDIT +SELINUX +IMA +SYSVINIT
+LIBCRYPTSETUP +GCRYPT +ACL +XZ)
Detected v i r t u a l i z a t i o n ’ systemd−nspawn ’ .

Welcome to Fedora 20 ( Heisenbug ) !

[ OK ] Reached ta rge t Remote F i l e Systems .
[ OK ] Created s l i c e Root S l i c e .
[ OK ] Created s l i c e User and Ses s i on S l i c e .
[ OK ] Created s l i c e System S l i c e .
[ OK ] Created s l i c e system−getty . s l i c e .
[ OK ] Reached ta rge t S l i c e s .
[ OK ] L i s t en ing on Delayed Shutdown Socket .
[ OK ] L i s t en ing on /dev/ i n i t c t l Compat ib i l i ty Named Pipe .
[ OK ] L i s t en ing on Journal Socket .

S ta r t ing Journal Se rv i c e . . .
[ OK ] Started Journal Se rv i c e .
[ OK ] Reached ta rge t Paths .

Mounting Debug F i l e System . . .
Mounting Conf igurat ion F i l e System . . .
Mounting FUSE Control F i l e System . . .
S ta r t ing Create s t a t i c dev ice nodes in /dev . . .
Mounting POSIX Message Queue F i l e System . . .
Mounting Huge Pages F i l e System . . .

[ OK ] Reached ta rge t Encrypted Volumes .
[ OK ] Reached ta rge t Swap .

Mounting Temporary Directory . . .
S ta r t ing Load/Save Random Seed . . .

[ OK ] Mounted Conf igurat ion F i l e System .
[ OK ] Mounted FUSE Control F i l e System .
[ OK ] Mounted Temporary Directory .
[ OK ] Mounted POSIX Message Queue F i l e System .
[ OK ] Mounted Debug F i l e System .
[ OK ] Mounted Huge Pages F i l e System .
[ OK ] Started Load/Save Random Seed .
[ OK ] Started Create s t a t i c dev ice nodes in /dev .
[ OK ] Reached ta rge t Local F i l e Systems ( Pre ) .
[ OK ] Reached ta rge t Local F i l e Systems .

S ta r t ing Tr igger Flushing o f Journal to Pe r s i s t en t Storage . . .
S ta r t ing Recreate Vo l a t i l e F i l e s and D i r e c t o r i e s . . .

[ OK ] Started Recreate Vo l a t i l e F i l e s and D i r e c t o r i e s .
S ta r t ing Update UTMP about System Reboot/Shutdown . . .

[ OK ] Started Tr igger Flushing o f Journal to Pe r s i s t en t Storage .
[ OK ] Started Update UTMP about System Reboot/Shutdown .
[ OK ] Reached ta rge t System I n i t i a l i z a t i o n .
[ OK ] Reached ta rge t Timers .
[ OK ] L i s t en ing on D−Bus System Message Bus Socket .
[ OK ] Reached ta rge t Sockets .
[ OK ] Reached ta rge t Basic System .

Sta r t ing Login Se rv i c e . . .
S ta r t ing Permit User Se s s i on s . . .
S ta r t ing D−Bus System Message Bus . . .

[ OK ] Started D−Bus System Message Bus .
S ta r t ing Cleanup o f Temporary D i r e c t o r i e s . . .

[ OK ] Started Cleanup of Temporary D i r e c t o r i e s .
[ OK ] Started Permit User Se s s i on s .

S ta r t ing Console Getty . . .
[ OK ] Started Console Getty .
[ OK ] Reached ta rge t Login Prompts .
[ OK ] Started Login Se rv i c e .
[ OK ] Reached ta rge t Multi−User System .
[ OK ] Reached ta rge t Graphical I n t e r f a c e .

Fedora r e l e a s e 20 ( Heisenbug )
Kernel 3 .18.0−0. rc4 . g i t 0 . 1 . f c22 . x86 64 on an x86 64 ( conso l e )

mycontainer l o g i n : root
Password :
−bash−4.2#

Now we have everything ready to play around with the container integration
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of systemd. Let’s have a look at the first tool, machinectl. When run without
parameters it shows a list of all locally running containers:

$ machinect l
MACHINE CONTAINER SERVICE
mycontainer conta ine r nspawn

1 machines l i s t e d .

The ”status” subcommand shows details about the container:

$ machinect l s t a tu s mycontainer
mycontainer :

S ince : Mi 2014−11−12 16 :47 : 19 CET; 51 s ago
Leader : 5374 ( systemd )

Se rv i c e : nspawn ; c l a s s conta ine r
Root : / srv /mycontainer

Address : 192 . 168 . 178 . 38
10 . 3 6 . 6 . 1 62
fd00 : : 5 2 3 f :56 f f : f e00 :4994
fe80 : : 5 2 3 f :56 f f : f e00 :4994

OS: Fedora 20 ( Heisenbug )
Unit : machine−mycontainer . scope

5 3 7 4 / usr / l i b / systemd/systemd
s y s t e m . s l i c e

d b u s . s e r v i c e
5 4 1 4 /bin /dbus−daemon −−system

−−address=systemd : −−nofork −−n op i d f i l e −−systemd−act . . .
s y s t e m d −j ourna ld . s e r v i c e

5 3 8 3 / usr / l i b / systemd/systemd−j ourna ld
s y s t e m d −l og ind . s e r v i c e

5 4 1 1 / usr / l i b / systemd/systemd−l og ind
c o n s o l e −getty . s e r v i c e

5 4 1 6 / sb in / agetty −−noc l ea r −s
conso l e 115200 38400 9600

With this we see some interesting information about the container, including
its control group tree (with processes), IP addresses and root directory.

The ”login” subcommand gets us a new login shell in the container:

# machinect l l o g i n mycontainer
Connected to conta ine r mycontainer .
Press ˆ ] three t imes within 1 s to ex i t s e s s i o n .

Fedora r e l e a s e 20 ( Heisenbug )
Kernel 3 .18.0−0. rc4 . g i t 0 . 1 . f c22 . x86 64 on an x86 64 ( pts /0)

mycontainer l o g i n :

The ”reboot” subcommand reboots the container:

# machinect l reboot mycontainer

The ”poweroff” subcommand powers the container off:

# machinect l powerof f mycontainer

So much about the machinectl tool. The tool knows a couple of more com-
mands, please check the man page for details. Note again that even though we
use systemd-nspawn as container manager here the concepts apply to any con-
tainer manager that implements the logic described here, including libvirt-lxc
for example.

machinectl is not the only tool that is useful in conjunction with containers.
Many of systemd’s own tools have been updated to explicitly support contain-
ers too! Let’s try this (after starting the container up again first, repeating the
systemd-nspawn command from above.):
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# hostnamectl −M mycontainer set−hostname ”wuff ”

This uses hostnamectl(1) on the local container and sets its hostname.

Similar, many other tools have been updated for connecting to local containers.
Here’s systemctl(1)’s -M switch in action:

# systemct l −M mycontainer
UNIT LOAD ACTIVE SUB DESCRIPTION
−.mount loaded ac t i v e mounted /
dev−hugepages . mount loaded ac t i v e mounted Huge Pages F
dev−mqueue . mount loaded ac t i v e mounted POSIX Messag
proc−sys−kerne l−random−boot id . mount loaded ac t i v e mounted /proc / sys /ke
[ . . . ]
time−sync . t a rg e t loaded ac t i v e a c t i v e System Time
t imers . t a rg e t loaded ac t i v e a c t i v e Timers
systemd−tmpf i l e s−c l ean . t imer loaded ac t i v e wait ing Daily Cleanu

LOAD = Re f l e c t s whether the unit d e f i n i t i o n was proper ly loaded .
ACTIVE = The high−l e v e l un i t a c t i v a t i on state , i . e . g e n e r a l i z a t i o n o f SUB
SUB = The low−l e v e l un i t a c t i v a t i on state , va lues depend on unit type .

49 loaded un i t s l i s t e d . Pass −−a l l to see loaded but i n a c t i v e units , too .
To show a l l i n s t a l l e d unit f i l e s use ’ sys temct l l i s t−unit−f i l e s ’ .

As expected, this shows the list of active units on the specified container, not
the host. (Output is shortened here, the blog story is already getting too long).

Let’s use this to restart a service within our container:

# systemct l −M mycontainer r e s t a r t systemd−r e so l v ed . s e r v i c e

systemctl has more container support though than just the -M switch. With
the -r switch it shows the units running on the host, plus all units of all local,
running containers:

# systemct l −r
UNIT LOAD ACTIVE SUB DESCR
boot . automount loaded ac t i v e wait ing EFI S
proc−sys−f s−binfmt misc . automount loaded ac t i v e wait ing Arbit
sys−devices−pci0000 :00−0000:00:02.0−drm−card0−card0\x2dLVDS\x2d1−i n t e l b a
[ . . . ]
t imers . t a rg e t
mandb . t imer
systemd−tmpf i l e s−c l ean . t imer
mycontainer :−.mount
mycontainer : dev−hugepages . mount
mycontainer : dev−mqueue . mount
[ . . . ]
mycontainer : time−sync . t a rg e t
mycontainer : t imers . t a rg e t
mycontainer : systemd−tmpf i l e s−c l ean . t imer

LOAD = Re f l e c t s whether the unit d e f i n i t i o n was proper ly loaded .
ACTIVE = The high−l e v e l un i t a c t i v a t i on state , i . e . g e n e r a l i z a t i o n o f SUB
SUB = The low−l e v e l un i t a c t i v a t i on state , va lues depend on unit type .

191 loaded un i t s l i s t e d . Pass −−a l l to see loaded but i n a c t i v e units , too .
To show a l l i n s t a l l e d unit f i l e s use ’ sys temct l l i s t−unit−f i l e s ’ .

We can see here first the units of the host, then followed by the units of the one
container we have currently running. The units of the containers are prefixed
with the container name, and a colon (”:”). (The output is shortened again for
brevity’s sake.)

The list-machines subcommand of systemctl shows a list of all running contain-
ers, inquiring the system managers within the containers about system state
and health. More specifically it shows if containers are properly booted up, or
if there are any failed services:
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# systemct l l i s t−machines
NAME STATE FAILED JOBS
de l ta ( host ) running 0 0
mycontainer running 0 0
miau degraded 1 0
waldi running 0 0

4 machines l i s t e d .

To make things more interesting we have started two more containers in paral-
lel. One of them has a failed service, which results in the machine state to be
degraded.

Let’s have a look at journalctl(1)’s container support. It too supports -M to
show the logs of a specific container:

# jou r n a l c t l −M mycontainer −n 8
Nov 12 16 :51 : 13 wuff systemd [ 1 ] : S ta r t ing Graphical I n t e r f a c e .
Nov 12 16 :51 : 13 wuff systemd [ 1 ] : Reached ta rge t Graphical Inte
Nov 12 16 :51 : 13 wuff systemd [ 1 ] : S ta r t ing Update UTMP about Sy
Nov 12 16 :51 : 13 wuff systemd [ 1 ] : Started Stop Read−Ahead Data
Nov 12 16 :51 : 13 wuff systemd [ 1 ] : Started Update UTMP about Sys
Nov 12 16 :51 : 13 wuff systemd [ 1 ] : Startup f i n i s h e d in 399ms .
Nov 12 16 :51 : 13 wuff sshd [ 3 5 ] : Server l i s t e n i n g on 0 . 0 . 0 . 0 por
Nov 12 16 :51 : 13 wuff sshd [ 3 5 ] : Server l i s t e n i n g on : : port 24 .

However, it also supports -m to show the combined log stream of the host and
all local containers:

# jou r n a l c t l −m −e

(Let’s skip the output here completely, I figure you can extrapolate how this
looks.)

But it’s not only systemd’s own tools that understand container support these
days, procps sports support for it, too:

# ps −eo pid , machine , args
PID MACHINE COMMAND

1 − / usr / l i b / systemd/systemd −−switch
[ . . . ]
2915 − emacs contents / p r o j e c t s / conta ine r
3403 − [ kworker/u16 : 7 ]
3415 − [ kworker/u16 : 9 ]
4501 − / usr / l i b e x e c /nm−vpnc−s e r v i c e
4519 − / usr / sb in /vpnc −−non−i n t e r −−no−d
4749 − / usr / l i b e x e c /dconf−s e r v i c e
4980 − / usr / l i b / systemd/systemd−r e so l v ed
5006 − / usr / l i b 64 / f i r e f o x / f i r e f o x
5168 − [ kworker/u16 : 0 ]
5192 − [ kworker/u16 : 4 ]
5193 − [ kworker/u16 : 5 ]
5497 − [ kworker/u16 : 1 ]
5591 − [ kworker/u16 : 8 ]
5711 − sudo −s
5715 − /bin /bash
5749 − /home/ l ennar t / p r o j e c t s / systemd/sy
5750 mycontainer / usr / l i b / systemd/systemd
5799 mycontainer / usr / l i b / systemd/systemd−j ourna ld
5862 mycontainer / usr / l i b / systemd/systemd−l og ind
5863 mycontainer /bin /dbus−daemon −−system −−addre
5868 mycontainer / sb in / agetty −−noc l ea r −−keep−bau
5871 mycontainer / usr / sb in / sshd −D
6527 mycontainer / usr / l i b / systemd/systemd−r e so l v ed
[ . . . ]

This shows a process list (shortened). The second column shows the container
a process belongs to. All processes shown with ”-” belong to the host itself.

But it doesn’t stop there. The new ”sd-bus” D-Bus client library we have been
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preparing in the systemd/kdbus context knows containers too. While you use
sd bus open system() to connect to your local host’s system bus sd bus open system container()
may be used to connect to the system bus of any local container, so that you
can execute bus methods on it.

sd-login.h and machined’s bus interface provide a number of APIs to add con-
tainer support to other programs too. They support enumeration of containers
as well as retrieving the machine name from a PID and similar.

systemd-networkd also has support for containers. When run inside a container
it will by default run a DHCP client and IPv4LL on any veth network interface
named host0 (this interface is special under the logic described here). When
run on the host networkd will by default provide a DHCP server and IPv4LL
on veth network interface named ve- followed by a container name.

Let’s have a look at one last facet of systemd’s container integration: the hook-
up with the name service switch. Recent systemd versions contain a new NSS
module nss-mymachines that make the names of all local containers resolvable
via gethostbyname() and getaddrinfo(). This only applies to containers that
run within their own network namespace. With the systemd-nspawn command
shown above the the container shares the network configuration with the host
however; hence let’s restart the container, this time with a virtual veth network
link between host and container:

# machinect l powerof f mycontainer
# systemd−nspawn −D / srv /mycontainer −−network−veth −b

Now, (assuming that networkd is used in the container and outside) we can
already ping the container using its name, due to the simple magic of nss-
mymachines:

# ping mycontainer
PING mycontainer ( 1 0 . 0 . 0 . 2 ) 56(84) bytes o f data .
64 bytes from mycontainer ( 1 0 . 0 . 0 . 2 ) : icmp seq=1 t t l =64 time=0.124 ms
64 bytes from mycontainer ( 1 0 . 0 . 0 . 2 ) : icmp seq=2 t t l =64 time=0.078 ms

Of course, name resolution not only works with ping, it works with all other
tools that use libc gethostbyname() or getaddrinfo() too, among them venerable
ssh.

And this is pretty much all I want to cover for now. We briefly touched a
variety of integration points, and there’s a lot more still if you look closely. We
are working on even more container integration all the time, so expect more
new features in this area with every systemd release.

Note that the whole machine concept is actually not limited to containers, but
covers VMs too to a certain degree. However, the integration is not as close, as
access to a VM’s internals is not as easy as for containers, as it usually requires
a network transport instead of allowing direct syscall access.
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Anyway, I hope this is useful. For further details, please have a look at the
linked man pages and other documentation.

23 references
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